# **EMC Test Report**

Applicant: Shenzhen Ensmar Technology Co., Ltd Address: Fl.5, Block A, Wanhe Technology Building, Huitong Road, Fenghuang Community, Guangming District, 518107 Shenzhen City, Guangdong Province, PEOPLE'S REPUBLIC OF CHINA

## Product: Rechargeable Lithium Ion Battery System

Model: ES S-48100H



Add value. Inspire trust.

## COMMERCIAL-IN-CONFIDENCE

Report Number: 64.771.22.60506.01

| RESPONSIBLE FOR | NAME       | SIGNATURE  | DATE       |
|-----------------|------------|------------|------------|
| Prepared by     | Matt Zhang | Matt zhang | 2023-04-03 |
| Approved by     | Wendy Ye   | Werds.6    | 2023-04-03 |

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service control rules.

| EXECUTIVE SUMMARY                          | EN IEC 61000-6-1:2019. |
|--------------------------------------------|------------------------|
| This product was tested and found to be in | EN IEC 61000-6-3:2021. |
| compliance with                            |                        |

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch

5/F & East of 8/F., Communication Building, No.163, Pingyun Road, West of Huangpu Avenue, Guangzhou, China Phone: +86 20 3815 3200 Fax: +86 20 3832 0478 <u>www.tuvsud.com</u>

ID Number: GCN\_SR\_EMC\_TR\_001 Revision:2.0 Effective:2019-12-26

TÜV®



# Contents

| 1                                                                           | Report Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                       |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 1.1<br>1.2<br>1.3<br>1.4<br>1.5<br>1.6<br>1.7                               | Report Modification Record<br>Introduction<br>Brief Summary of Results<br>Test Conditions<br>Product Information and general remarks<br>Deviations from the Standard<br>Test Location                                                                                                                                                                                                                                                                                                            | 3<br>4<br>5<br>6<br>6                                   |
| 2                                                                           | Test Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                                       |
| 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6<br>2.7<br>2.8<br>2.9<br>2.10<br>2.11 | Conducted Disturbance<br>Radiated Disturbance (30MHz to 1000MHz)<br>Harmonic current emission<br>Flicker<br>Electrostatic discharge immunity test<br>Electrical fast transient /burst immunity test<br>Immunity to conducted disturbances, induced by radio-frequency fields<br>Radiated, radio-frequency, electromagnetic field immunity test<br>Surge immunity test<br>Voltage dips, short interruptions and voltage variations immunity tests<br>Power-frequency magnetic field immunity test | 9<br>15<br>17<br>19<br>22<br>25<br>27<br>30<br>32<br>34 |
| 3                                                                           | Test Equipment Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37                                                      |
| 3.1                                                                         | General Test Equipment Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37                                                      |
| 4                                                                           | Measurement Uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37                                                      |
| 5                                                                           | Photographs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41                                                      |



## 1 Report Summary

#### 1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

| Issue | Description of Change | Date of Issue |
|-------|-----------------------|---------------|
| 1     | First Issue           | 2023-04-03    |

#### 1.2 Introduction

The information contained in this report is intended to show verification of the EMC Qualification Approval Testing of the requirements of the standards for the tests listed in Section 1.3.

| Applicant              | : | Shenzhen Ensmar Technology Co., Ltd                                                                                                                                         |
|------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address                | : | FI.5, Block A, Wanhe Technology Building, Huitong Road,<br>Fenghuang Community, Guangming District, 518107 Shenzhen<br>City, Guangdong Province, PEOPLE'S REPUBLIC OF CHINA |
| Manufacturer           | : | Dongguan Ensmar New Energy Technology Co., Ltd                                                                                                                              |
| Address                | : | Room 403, Block 6, No. 169, Xianjiang Road, Dalang Town,<br>523000 Dongguan City, Guangdong Province, PEOPLE'S<br>REPUBLIC OF CHINA                                         |
| Model Number(s)        | : | ES S-48100H                                                                                                                                                                 |
| Product Type           | : | Rechargeable Lithium Ion Battery System                                                                                                                                     |
| Date of Receipt of EUT | : | 2022-12-15                                                                                                                                                                  |
| Start of Test          | : | 2022-12-19                                                                                                                                                                  |
| Finish of Test         | : | 2023-01-06                                                                                                                                                                  |
| Name of Engineer(s)    | : | Matt Zhang                                                                                                                                                                  |



### 1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with EN IEC 61000-6-1:2019 and EN IEC 61000-6-3:2021 is shown below.

| Specification         | Test Description                                               | Result | Comments/Base<br>Standard    |
|-----------------------|----------------------------------------------------------------|--------|------------------------------|
| EN IEC 61000-6-3:2021 | Radiated Disturbance (30MHz to 1GHz)                           | Pass   | CISPR 16-2-3                 |
| EN IEC 61000-6-3:2021 | Conducted Disturbance at AC mains port                         | N/A    | CISPR 16-2-1<br>CISPR 16-1-2 |
| EN IEC 61000-6-3:2021 | Conducted Disturbance at DC<br>power port*                     | N/A    | CISPR 16-2-1<br>CISPR 16-1-2 |
| EN IEC 61000-6-3:2021 | Conducted Disturbance at<br>Telecommunications/network port    | N/A    | CISPR 22                     |
| EN IEC 61000-6-3:2021 | Harmonic Current Emissions                                     | N/A    | IEC 61000-3-2                |
| EN IEC 61000-6-3:2021 | Flicker                                                        | N/A    | IEC 61000-3-3                |
| EN IEC 61000-6-1:2019 | Electrostatic discharge                                        | Pass   | IEC 61000-4-2                |
| EN IEC 61000-6-1:2019 | Radiated, radio-frequency, electromagnetic field immunity test | Pass   | IEC 61000-4-3                |
| EN IEC 61000-6-1:2019 | Power frequency magnetic field<br>immunity test**              | N/A    | IEC 61000-4-8                |
| EN IEC 61000-6-1:2019 | Fast transients*                                               | N/A    | IEC 61000-4-4                |
| EN IEC 61000-6-1:2019 | Radio-frequency common mode*                                   | N/A    | IEC 61000-4-6                |
| EN IEC 61000-6-1:2019 | Surge***                                                       | N/A    | IEC 61000-4-5                |
| EN IEC 61000-6-1:2019 | Voltage dips and voltage<br>interruptions                      | N/A    | IEC 61000-4-11               |

Remark:

"\*": Applicable only to ports with a connecting cable exceeding a length of 3m.

"\*\*": Application only to equipment containing devices susceptible to magnetic fields.

"\*\*\*": Applicable only to ports interfacing with long distance lines; not applicable to input ports intended for connection to a battery.

Note 1: The highest internal frequency of the EUT is less than 108 MHz, the measurement was made up to 1GHz.



### 1.4 Test Conditions

#### 1.4.1 Environmental Conditions

The climatic conditions during the tests are within the limits specified by the manufacturer for the operation of the EUT and the test equipment.

The climatic conditions during the tests were within the following limits:

| Temperature   | Humidity    | Atmospheric pressure |
|---------------|-------------|----------------------|
| 15 °C – 35 °C | 30 % - 60 % | 860 hPa – 1060 hPa   |

If explicitly required in the basic standard or applied product standard the climatic values are recorded and documented separately in this test report.

#### 1.4.2 Performance Criteria

Performance criterion A: The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonable expect from the apparatus if used as intended.

Performance criterion B: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however no change of actual operating state or stored data is allowed to persist after test. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonable expect from the apparatus if used as intended.

Performance criterion C: Temporary loss of function is allowed, provided the function is selfrecoverable or can be restored by the operation of the controls, or by any operation specified in the instruction for use.

If, as a result of the application of the tests defined in this standard, the EUT becomes dangerous or unsafe, it shall be deemed to have failed the test.



#### 1.5 Product Information and general remarks

### 1.5.1 Technical Description

Nominal Voltage : DC 51.2V

#### 1.5.2 Test Configuration

| Configuration | Description |
|---------------|-------------|
| DC Powered    | DC 51.2V    |

### 1.5.3 Modes of Operation

| Mode | Description                     |
|------|---------------------------------|
| TM1  | Charging mode (DC56.8V, 20A)    |
| TM2  | Discharging mode (DC51.2V, 20A) |

#### 1.5.4 General remark:

EUT is a Rechargeable Li-ion Battery.

#### 1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

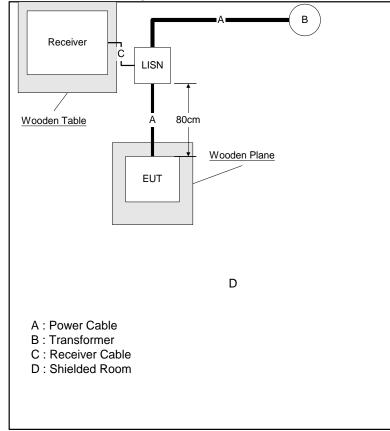
#### 1.7 Test Location

Test Site: TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch

Address:

South 1/F & Unit 302, TÜV SÜD Testing Center, D1 building, No.63 Chuangqi Road, Shilou Town, Panyu District, Guangzhou, P.R. China




## 2 Test Details

### 2.1 Conducted Disturbance

#### 2.1.1 Test Method

The EUT was placed on a 0.8 m non-conductive table for table-top equipment and on a 0.12 m insulated support for floor standing equipment above a ground reference plane all within a test laboratory.

All power was connected to the EUT through an Artificial Mains Network (AMN). Conducted disturbance voltage measurements on mains lines were made at the output of the AMN. The AMN was placed 0.8m from the boundary of the EUT and bonded to the reference ground plane.





#### 2.1.2 Specification Limits

| Disturbance voltage limits at the AC mains port |               |          |  |  |
|-------------------------------------------------|---------------|----------|--|--|
| Frequency range                                 | Limits dB(µV) |          |  |  |
| Frequency range                                 | Quasi-peak    | Average  |  |  |
| 0.15MHz to 0.5MHz                               | 66 to 56      | 56 to 46 |  |  |
| 0.5MHz to 5.0MHz                                | 56            | 46       |  |  |
| 5.0MHz to 30MHz                                 | 60            | 50       |  |  |

| Disturbance voltage limits at the DC power port |               |         |  |  |
|-------------------------------------------------|---------------|---------|--|--|
| Frequency range                                 | Limits dB(µV) |         |  |  |
| Trequency range                                 | Quasi-peak    | Average |  |  |
| 0.15MHz to 0.5MHz                               | 79            | 66      |  |  |
| 0.5MHz to 30MHz                                 | 73            | 60      |  |  |

| Disturbance voltage limits at the telecommunications/network port |               |          |  |  |
|-------------------------------------------------------------------|---------------|----------|--|--|
| Frequency range                                                   | Limits dB(µV) |          |  |  |
| Trequency range                                                   | Quasi-peak    | Average  |  |  |
| 0.15MHz to 0.5MHz                                                 | 84 to 74      | 74 to 64 |  |  |
| 0.5MHz to 30MHz                                                   | 74            | 64       |  |  |

Remark :

Level=Reading Level + Correction Factor Correction Factor=Cable Loss + LISN Factor (The Reading Level is recorded by software which is not shown in the sheet)

## 2.1.3 Test Setup

N/A

## 2.1.4 Test Location

This test was carried out in shielded room.

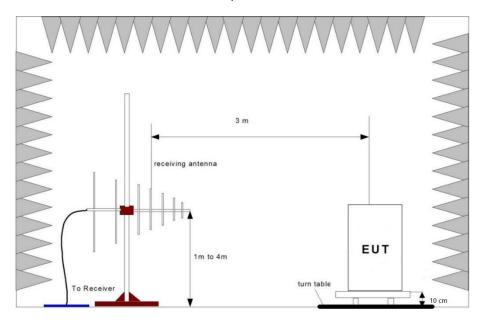
## 2.1.5 Test Results

Results for Configuration and Mode: N/A

Performance assessment of the EUT made during this test: N/A

Detailed results are shown below.

Remark: For DC power port, the cable length less than 3m declared by manufacturer.




#### 2.2 Radiated Disturbance (30MHz to 1000MHz)

#### 2.2.1 Test Method

The EUT was set up in a semi-anechoic chamber on a remotely controlled turntable placed on a 0.8 m non-conductive table for table-top equipment and on a 0.12 m insulated support for floor standing equipment above a ground reference plane.

A prescan of the EUT emissions profile was made while varying the antennae-to-EUT azimuth and antenna-to-EUT polarization using a peak detector; measurements were taken at a 3m distance. Using the prescan list of the highest emissions detected, their bearing and associated antenna polarization, the EUT was then formally measured using Quasi-Peak and Average detectors, as appropriate. The readings were maximized by adjusting the antenna height, polarization and turntable azimuth, in accordance with the specification.

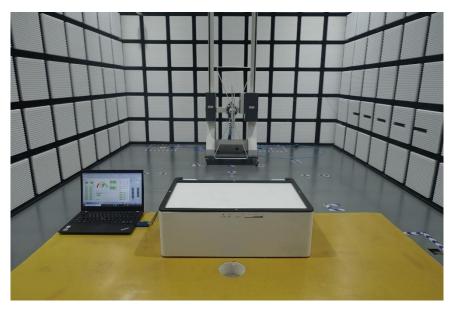




## 2.2.2 Specification Limits

| Radiated disturbance limits in the frequency range 30MHz to 1000MHz |                            |  |  |  |
|---------------------------------------------------------------------|----------------------------|--|--|--|
| at a measuring distance of 3 m                                      |                            |  |  |  |
| Frequency range MHz                                                 | Quasi-peak limits dB(µV/m) |  |  |  |
| 30 to 230                                                           | 40                         |  |  |  |
| 230 to 1000                                                         | 47                         |  |  |  |

| Radiated disturbance limits in the frequency range 30MHz to 1000MHz |                            |  |  |  |
|---------------------------------------------------------------------|----------------------------|--|--|--|
| at a measuring distance of 10 m                                     |                            |  |  |  |
| Frequency range MHz                                                 | Quasi-peak limits dB(µV/m) |  |  |  |
| 30 to 230                                                           | 30                         |  |  |  |
| 230 to 1000                                                         | 37                         |  |  |  |

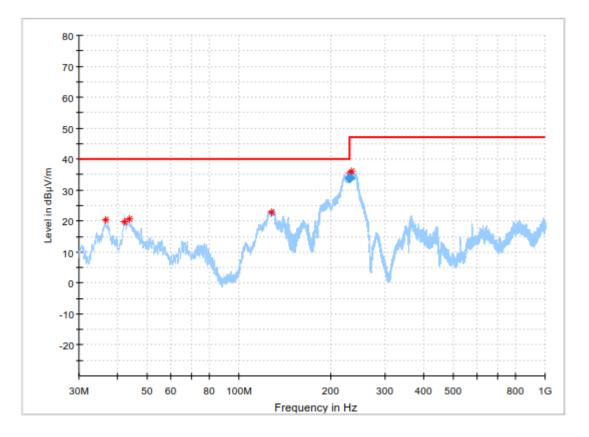

Remark :

Level=Reading Level + Correction Factor

Correction Factor=Antenna Factor + Cable Loss

(The Reading Level is recorded by software which is not shown in the sheet)

### 2.2.3 Test Setup



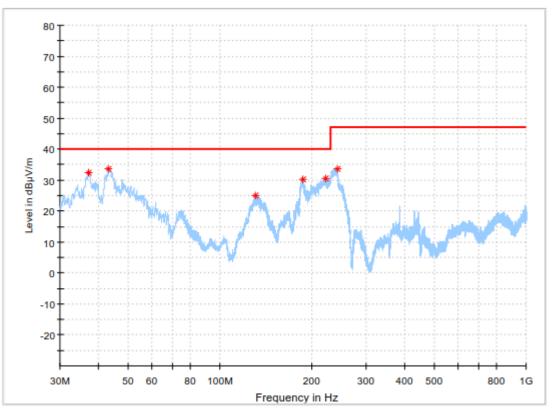

#### 2.2.4 Test Location

This test was carried out in 3m SAC Test Location.



## 2.2.5 Test Results




## **Critical Freqs**

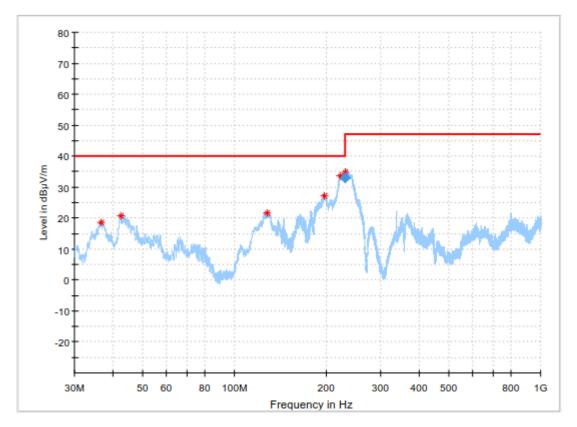
| Frequency  | MaxPeak  | Limit    | Margin | Pol | Corr.  |
|------------|----------|----------|--------|-----|--------|
| (MHz)      | (dBµV/m) | (dBµV/m) | (dB)   |     | (dB/m) |
| 36.574444  | 20.36    | 40.00    | 19.64  | Н   | -19.5  |
| 42.071111  | 19.77    | 40.00    | 20.23  | Н   | -17.9  |
| 43.687778  | 20.62    | 40.00    | 19.38  | Н   | -17.7  |
| 127.592778 | 22.99    | 40.00    | 17.01  | Н   | -23.7  |
| 229.981667 | 35.31    | 40.00    | 4.69   | Н   | -20.5  |
| 233.268889 | 36.18    | 47.00    | 10.82  | Н   | -20.3  |

## **Final Result**

| Frequency  | QuasiPeak | Limit    | Margin | Pol | Corr.  |
|------------|-----------|----------|--------|-----|--------|
| (MHz)      | (dBµV/m)  | (dBµV/m) | (dB)   |     | (dB/m) |
| 229.947334 | 33.83     | 40.00    | 6.17   | Н   | -20.5  |






## **Critical Freqs**

| Frequency  | MaxPeak  | Limit    | Margin | Pol | Corr.  |
|------------|----------|----------|--------|-----|--------|
| (MHz)      | (dBµV/m) | (dBµV/m) | (dB)   |     | (dB/m) |
| 37.167222  | 32.50    | 40.00    | 7.50   | V   | -19.3  |
| 43.310556  | 33.50    | 40.00    | 6.50   | V   | -17.7  |
| 130.987778 | 24.96    | 40.00    | 15.04  | V   | -24.0  |
| 186.655000 | 30.15    | 40.00    | 9.85   | V   | -22.3  |
| 220.551111 | 30.45    | 40.00    | 9.55   | V   | -20.9  |
| 241.406111 | 33.51    | 47.00    | 13.49  | V   | -20.0  |

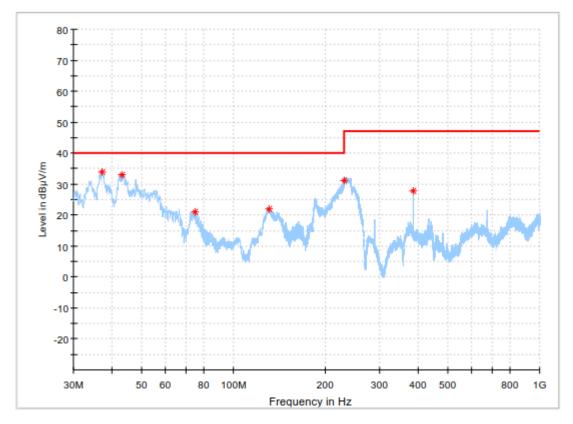
Model Test Mode Polarity Test Date : ES S-48100H

- Charging mode (DC56.8V,20A)
- : Charging : Vertical
- : 2023-01-04





## **Critical Freqs**


| Frequency<br>(MHz) |                                                                           | Limit<br>(dBuV/m)                                                                                           | Margin<br>(dB)                                                                                                                                     | Pol                                                                                                                                                                                  | Corr.<br>(dB/m)                                                                                                                                                                                |
|--------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (10112)            | (ubµv/m)                                                                  | (ubµv/m)                                                                                                    | (ub)                                                                                                                                               |                                                                                                                                                                                      | (ub/m)                                                                                                                                                                                         |
| 36.682222          | 18.66                                                                     | 40.00                                                                                                       | 21.34                                                                                                                                              | Н                                                                                                                                                                                    | -19.4                                                                                                                                                                                          |
| 42.610000          | 20.66                                                                     | 40.00                                                                                                       | 19.34                                                                                                                                              | Н                                                                                                                                                                                    | -17.8                                                                                                                                                                                          |
| 127.646667         | 21.60                                                                     | 40.00                                                                                                       | 18.40                                                                                                                                              | н                                                                                                                                                                                    | -23.7                                                                                                                                                                                          |
| 196.570556         | 27.17                                                                     | 40.00                                                                                                       | 12.83                                                                                                                                              | н                                                                                                                                                                                    | -20.5                                                                                                                                                                                          |
| 220.766667         | 33.64                                                                     | 40.00                                                                                                       | 6.36                                                                                                                                               | н                                                                                                                                                                                    | -20.9                                                                                                                                                                                          |
| 229.658333         | 34.93                                                                     | 40.00                                                                                                       | 5.07                                                                                                                                               | н                                                                                                                                                                                    | -20.6                                                                                                                                                                                          |
|                    | (MHz)<br>36.682222<br>42.610000<br>127.646667<br>196.570556<br>220.766667 | (MHz) (dBµV/m)   36.682222 18.66   42.610000 20.66   127.646667 21.60   196.570556 27.17   220.766667 33.64 | (MHz) (dBµV/m) (dBµV/m)   36.682222 18.66 40.00   42.610000 20.66 40.00   127.646667 21.60 40.00   196.570556 27.17 40.00   220.766667 33.64 40.00 | (MHz) (dBµV/m) (dBµV/m) (dB)   36.682222 18.66 40.00 21.34   42.610000 20.66 40.00 19.34   127.646667 21.60 40.00 18.40   196.570556 27.17 40.00 12.83   220.766667 33.64 40.00 6.36 | (MHz) (dBµV/m) (dBµV/m) (dB)   36.682222 18.66 40.00 21.34 H   42.610000 20.66 40.00 19.34 H   127.646667 21.60 40.00 18.40 H   196.570556 27.17 40.00 12.83 H   220.766667 33.64 40.00 6.36 H |

## **Final Result**

| Frequency  | QuasiPeak | Limit    | Margin | Pol | Corr.  |
|------------|-----------|----------|--------|-----|--------|
| (MHz)      | (dBµV/m)  | (dBµV/m) | (dB)   |     | (dB/m) |
| 229.766111 | 33.02     | 40.00    | 6.98   | Н   | -20.5  |

| Model     | : | ES S-48100H                    |
|-----------|---|--------------------------------|
| Test Mode | : | Discharging mode (DC51.2V,20A) |
| Polarity  | : | Horizontal                     |
| Test Date | : | 2023-01-04                     |





## **Critical Freqs**

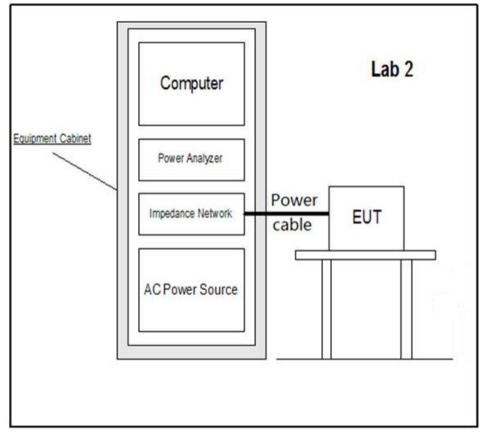
| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Pol | Corr.<br>(dB/m) |  |
|--------------------|---------------------|-------------------|----------------|-----|-----------------|--|
| 130.718333         | 21.93               | 40.00             | 18.07          | V   | -24.0           |  |
| 37.167222          | 33.96               | 40.00             | 6.04           | V   | -19.3           |  |
| 74.620000          | 21.13               | 40.00             | 18.87          | V   | -25.0           |  |
| 229.981667         | 31.29               | 40.00             | 8.71           | V   | -20.5           |  |
| 43.310556          | 32.98               | 40.00             | 7.02           | V   | -17.7           |  |
| 385.612778         | 27.65               | 47.00             | 19.35          | V   | -16.5           |  |

Model Test Mode Polarity Test Date : ES S-48100H

: Discharging mode (DC51.2V,20A)

: Vertical

: 2023-01-04




#### 2.3 Harmonic current emission

#### 2.3.1 Test Method

Harmonic current test should be conducted with the user's operation control or automatic programs set to the mode expected to produce the maximum total harmonic current under normal operating conditions.

Specific test conditions for the measurement of harmonic currents associated with some types of equipment are given in test equipment list.



### 2.3.2 Specification Limits

| Limits for cla                                   | Limits for class A Equipment |  |  |  |  |
|--------------------------------------------------|------------------------------|--|--|--|--|
| Harmonic order n Maximum permissible harmonic cu |                              |  |  |  |  |
| Odd h                                            | narmonics                    |  |  |  |  |
| 3                                                | 2.30                         |  |  |  |  |
| 5                                                | 1.14                         |  |  |  |  |
| 7                                                | 0.77                         |  |  |  |  |
| 9                                                | 0.40                         |  |  |  |  |
| 11                                               | 0.33                         |  |  |  |  |
| 13                                               | 0.21                         |  |  |  |  |
| 15≤ n≤ 39                                        | 0.15(15/n)                   |  |  |  |  |
| Even harmonics                                   |                              |  |  |  |  |



| Limits for class A Equipment |           |  |  |  |
|------------------------------|-----------|--|--|--|
| 2                            | 1.08      |  |  |  |
| 4                            | 0.43      |  |  |  |
| 6                            | 0.30      |  |  |  |
| 8≤ n ≤40                     | 0.23(8/n) |  |  |  |

## 2.3.3 Test Setup

N/A

#### 2.3.4 Test Location

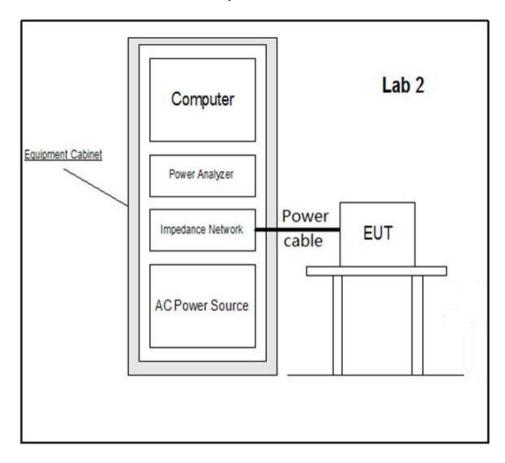
This test was carried out in Harmonic Flicker Test area.

## 2.3.5 Test Results

Results for Configuration and Mode: N/A

Performance assessment of the EUT made during this test: N/A

Detailed results are shown below.


Test date: N/A



#### 2.4 Flicker

#### 2.4.1 Test Method

Flicker test should be conducted with the user's operation controls or automatic programs set to the mode expected to produce the most unfavourable sequence of voltage change, using only those combinations of controls and programmes which are mentioned by the manufacturer in the instruction manual, or are otherwise likely to be used.



#### 2.4.2 Specification Limits

The value of *P*st shall not be greater than 1.0 The value of *P*lt shall not be greater than 0.65 *T*max, the accumulated time value of d(t) with a deviation exceeding 3.3% during a single voltage change at the EUT terminals, shall not exceed 500ms The maximum relative steady-state voltage change, *d*c, shall not exceed 3.3% The maximum relative voltage change *d*max, shall not exceed d(t) = 1000 max

- a) 4% without additional conditions
- b) 6% for equipment which is:
- Switched manually, or
- Switched automatically more frequently than twice per day, and also has either a delayed start, or manual restart, after a power supply interruption
- c) 7% for equipment which is:



- Attended whilst in use, or
- Switched on automatically, or is intended to be switched on manually, no more than twice per day, and also has either a delayed restart or manual restart, after a power supply interruption

### 2.4.3 Test Setup

N/A

#### 2.4.4 Test Location

This test was carried out in Harmonic Flicker Test area.

#### 2.4.5 Test Results

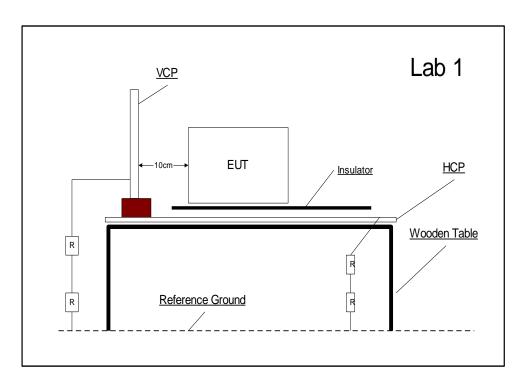
Results for Configuration and Mode: N/A

Performance assessment of the EUT made during this test: N/A

Detailed results are shown below.

Test date: N/A




#### 2.5 Electrostatic discharge immunity test

#### 2.5.1 Test Method

The equipment under test including associated cabling was configured on but insulated from, using a 0.5mm isolator, a horizontal coupling plane fitted to the top of a 0.8m non-conductive table for table-top equipment; and on a 0.1m insulated support for floor standing equipment; above a ground reference plane all within a test laboratory.

Using the air discharge method for non-metallic parts, contact discharge method for metallic parts with both vertical and horizontal couple plane discharge methods for the sides of the equipment under test, the required electrostatic discharge voltage levels in both voltage polarities were applied at the detailed pulse repartition rate.

During this testing any anomalies in the equipment under tests performance was recorded.



#### 2.5.2 Specification Limits

|                    | Required Test Levels |            |                                               |             |  |  |  |
|--------------------|----------------------|------------|-----------------------------------------------|-------------|--|--|--|
|                    | Discharge            | Level (kV) | Number of                                     | Performance |  |  |  |
| Discharge type     | Positive             | Negative   | discharges per<br>location<br>(each polarity) | Criteria    |  |  |  |
| Air – Direct       | 8                    | 8          | 10                                            | В           |  |  |  |
| Contact – Direct   | 4                    | 4          | 10                                            | В           |  |  |  |
| Contact – Indirect | 4                    | 4          | 10                                            | В           |  |  |  |



### 2.5.3 Test Setup and Teat point



## 2.5.4 Test Location

This test was carried out in ESD room.



### 2.5.5 Test Results

Results for Configuration and Mode: DC power/TM1 and TM2  $\,$ 

Performance assessment of the EUT made during this test: Pass

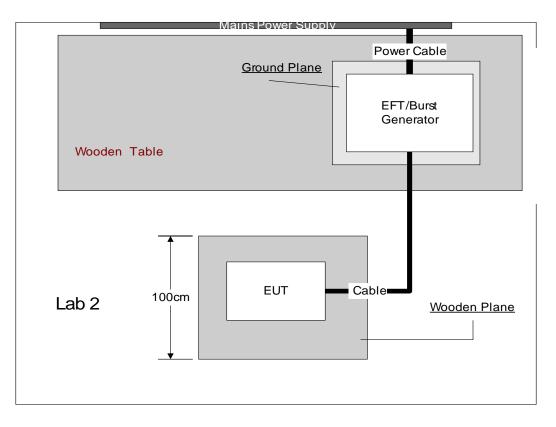
Detailed results are shown below.

Test date: 2023-01-03

|                                                        |             | Results: Met Performance Criteria |     |               |     |     |     |     |     |     |     |
|--------------------------------------------------------|-------------|-----------------------------------|-----|---------------|-----|-----|-----|-----|-----|-----|-----|
| Test Point                                             | Discharge   | 21                                | ٨V  | 4             | ٨V  | 64  | ٢V  | 8   | ٨V  | 15  | kV  |
|                                                        |             | +                                 | -   | +             | -   | +   | -   | +   | -   | +   | -   |
| НСР                                                    | Contact     | N/A                               | N/A | Α             | А   | N/A | N/A | N/A | N/A | N/A | N/A |
| VCP                                                    | Contact     | N/A                               | N/A | Α             | А   | N/A | N/A | N/A | N/A | N/A | N/A |
| Each conductive<br>location touchable<br>by hand       | Contact     | N/A                               | N/A | A             | A   | N/A | N/A | N/A | N/A | N/A | N/A |
| Each<br>nonconductive<br>location touchable<br>by hand | Air         | N/A                               | N/A | N/A           | N/A | N/A | N/A | A   | A   | N/A | N/A |
| N/A                                                    | Not Applian | се                                |     | Not Appliance |     |     |     |     |     |     |     |

Remark: No observable change.




#### 2.6 Electrical fast transient /burst immunity test

#### 2.6.1 Test Method

The equipment under test including associated cabling was configured on but insulated from, using a 0.1 m isolator, a horizontal coupling plane fitted to the top of a 0.8 m non-conductive table for table-top equipment; and on a 0.1 m insulated support for floor standing equipment; above a ground reference plane all within a test laboratory.

Using a CDN for power ports, capacitive coupling clamp for signal and control ports and a 33nF coupling capacitor for earth ports, the required fast transient burst voltage levels in both voltage polarities were applied at the detailed pulse repartition rate and duration of test.

During this testing any anomalies in the equipment under tests performance was recorded.





#### 2.6.2 Specification Limits

| Requi              |                                                                                                                                                                          |  |  |  |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Line Under<br>Test | Performance<br>Criteria                                                                                                                                                  |  |  |  |  |  |  |
| AC Power<br>Port   | AC Power +1 5 kHz 2 min per Direct B                                                                                                                                     |  |  |  |  |  |  |
|                    | Note 1. The test may be performed at one or at both repetition frequencies. The use of 5 kHz repetition frequency is traditional; however, 100 kHz is closer to reality. |  |  |  |  |  |  |

| Requir                                                                               | Required Test Levels at input and output d.c. power ports |       |                       |        |                         |  |  |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------|-------|-----------------------|--------|-------------------------|--|--|
| Line Under<br>Test Level (kV) Repetition Test Coupling<br>Rate (kHz) Duration Method |                                                           |       |                       |        | Performance<br>Criteria |  |  |
| DC Power<br>Port                                                                     | ± 0.5                                                     | 5 kHz | 2 min per<br>polarity | Direct | В                       |  |  |

Note 1. Not applicable to input ports intended for connection to a battery or a rechargeable battery which shall be removed or disconnected from the equipment for recharging.

Note 2. Equipment with a DC power input port intended for use with a dedicated AC– DC power adaptor shall be tested on the AC power input of the AC–DC power adaptor specified by the manufacturer (see test level of Table 4). Where no adaptor is specified the test shall be done on the DC power port using the test level of Table 4. Where an adaptor is specified the test is applicable to DC power input ports only when intended to be connected permanently to cables longer than 3 m.

Note 3. The test may be performed at one or at both repetition frequencies. The use of 5 kHz repetition frequency is traditional; however, 100 kHz is closer to reality.

| Requir                                                               |                         |                  |                |                 |                |  |
|----------------------------------------------------------------------|-------------------------|------------------|----------------|-----------------|----------------|--|
| Line Under<br>Test                                                   | Performance<br>Criteria |                  |                |                 |                |  |
| signal and<br>control Port ± 0.5 5 kHz 1 min per<br>polarity Clamp B |                         |                  |                |                 |                |  |
| Note 1 Applic                                                        | able only to po         | orts interfacing | with cables wh | ose total lengt | h according to |  |

Note 1. Applicable only to ports interfacing with cables whose total length according to the manufacturer's functional specification may exceed 3 m.

Note 2. The test may be performed at one or at both repetition frequencies. The use of 5 kHz repetition frequency is traditional; however, 100 kHz is closer to reality.

#### 2.6.3 Test Setup

N/A

#### 2.6.4 Test Location

This test was carried out in EMS Test Location.



### 2.6.5 Test Results

Results for Configuration and Mode: N/A

Performance assessment of the EUT made during this test: N/A

Remark: For DC power port and signal port, the connecting cable less than 3m, not applicable to these ports.



#### 2.7 Immunity to conducted disturbances, induced by radio-frequency fields

#### 2.7.1 Test Method

The equipment under test was configured, on but insulated from, using a 0.1 m isolator, a horizontal coupling plane fitted to the top of a 0.1 m non-conductive table for table-top equipment, above a ground reference plane all within a test laboratory.

All associated cabling was configured, on but insulated from, using a 50 mm isolator, the same horizontal coupling plane as the equipment under test.

Using CDNs, EM Clamps or current clamps as appropriate, the power ports and applicable signal and control ports were subjected to the required, pre calibrated RF injected signal strength, modulated as described, swept over the frequency range of test. During this testing any anomalies in the equipment under tests performance was recorded.

Mains Power Supply A A D **RF- Generator** Signal Cable Β 30cm Lab 1 EUT С A : Power Cable **B**: Ground Plane C: Wooden Plane D : EM Clamp



### 2.7.2 Specification Limits

| Line Under<br>TestFrequency<br>Range (MHz)Level (V)ModulationStep<br>Size (%)Dwell (s)Performance<br>Criteria |                                               |  |                                    |             |            |          |  |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|------------------------------------|-------------|------------|----------|--|
| Signal and<br>control lines                                                                                   | Signal and 0 15 to 80 3 AM (80 %,1 kHz, 1 1 A |  |                                    |             |            |          |  |
|                                                                                                               | able only to port<br>s functional spec        |  | with cables whose<br>v exceed 3 m. | total lengt | h accordin | g to the |  |

| Re                 | Required Test Levels at input and output DC power ports |   |                               |   |   |                         |
|--------------------|---------------------------------------------------------|---|-------------------------------|---|---|-------------------------|
| Line Under<br>Test | Level (V) Modulation (U) well (s)                       |   |                               |   |   | Performance<br>Criteria |
| DC power<br>ports  | 0.15 to 80                                              | 3 | AM (80 %,1<br>kHz, sine wave) | 1 | 1 | A                       |

Note 1. Applicable only to ports interfacing with cables whose total length according to the manufacturer's functional specification may exceed 3 m.

| Required Test Levels at input and output AC power ports |                                                                                                             |           |                                                 |  |  |   |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------|--|--|---|
| Line Under<br>Test                                      | Frequency<br>Range (MHz)                                                                                    | Level (V) | Level (V) Modulation Step<br>Size (%) Dwell (s) |  |  |   |
| AC power ports                                          | Range (MHz) Level (V) Modulation Size (%) Dwen (3) Criteria   0.15 to 80 3 AM (80 %,1 kHz, sine wave) 1 1 A |           |                                                 |  |  | А |
|                                                         |                                                                                                             |           |                                                 |  |  |   |

### 2.7.3 Test Setup

N/A

## 2.7.4 Test Location

This test was carried out in EMS Test Location.

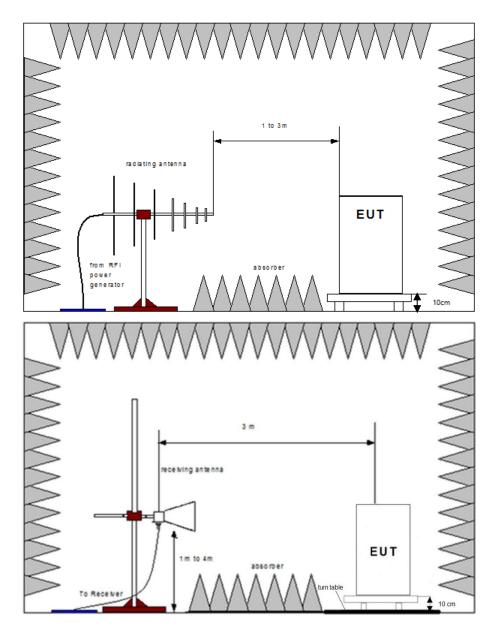
#### 2.7.5 Test Results

Results for Configuration and Mode: N/A

Performance assessment of the EUT made during this test: Pass

Remark: For DC power port and signal port, the connecting cable less than 3m, not applicable to these ports.




### 2.8 Radiated, radio-frequency, electromagnetic field immunity test

#### 2.8.1 Test Method

The equipment under test including associated cabling was configured, on a 0.8 m non-conductive table for table-top equipment and on a 0.12 m insulated support for floor standing equipment; with a pre-calibrated semi anechoic chamber.

All four side of the equipment under test were subjected to the required RF field strength, modulated as described, swept over the frequency range of test with the antenna positioned in both horizontal and vertical polarizations.

During this testing any anomalies in the equipment under tests performance was recorded.





## 2.8.2 Specification Limits

|                          | Required Test Levels                                                     |                               |   |   |   |  |  |
|--------------------------|--------------------------------------------------------------------------|-------------------------------|---|---|---|--|--|
| Frequency Range<br>(MHz) | Performance<br>Criteria                                                  |                               |   |   |   |  |  |
| 80 to 1000               | 3                                                                        | AM (80 %,1<br>kHz, sine wave) | 1 | 1 | А |  |  |
| 1400 to 6000             | А                                                                        |                               |   |   |   |  |  |
| Note 1. EUT powere       | Note 1. EUT powered at one of the Nominal input voltages and frequencies |                               |   |   |   |  |  |

## 2.8.3 Test Setup



## 2.8.4 Test Location

This test was carried out in RS Test Location.



## 2.8.5 Test Results

Results for Configuration and Mode: DC power/TM1 and TM2  $\,$ 

Performance assessment of the EUT made during this test: Pass

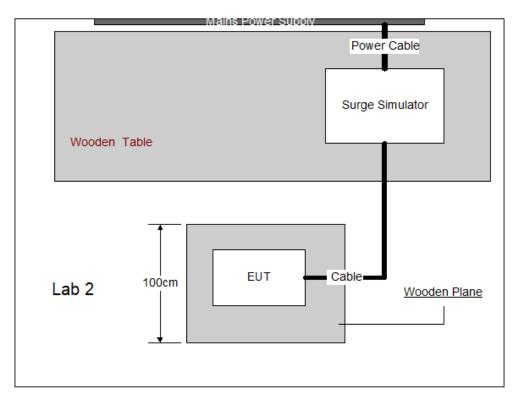
Detailed results are shown below.

Test date: 2023-01-03

| Tabulated Results for RF Electromagnetic Field 80 - 1000 MHz and 1400 MHz – 6000MHz |                         |            |            |                       |         |  |
|-------------------------------------------------------------------------------------|-------------------------|------------|------------|-----------------------|---------|--|
| Side of the equipment under test                                                    | Antenna<br>polarization | Test Level | Dwell Time | Measuring<br>distance | Results |  |
| Al sides                                                                            | Horizontal              | 3 V/m      | 1 s        | 3 m                   | А       |  |
| All sides                                                                           | Vertical                | 3 V/m      | 1 s        | 3 m                   | А       |  |

Remark: No observable change.




#### 2.9 Surge immunity test

#### 2.9.1 Test Method

The equipment under test including associated cabling was configured, on a 0.8 m non-conductive table for table-top equipment and on a 0.1 m insulated support for floor standing equipment above a ground reference plane all within a test laboratory.

Using CDNs for power ports and appropriate coupling methods for applicable signal and control ports, the required number of surges was applied for each surge voltage level using both positive and negative surge voltage polarities. Surges were applied at the power line frequency phase angles and repartition rates detailed.

During this testing any anomalies in the equipment under tests performance was recorded.





#### 2.9.2 Specification Limits

| Ir                      | Performance                                          |             |          |  |  |  |  |
|-------------------------|------------------------------------------------------|-------------|----------|--|--|--|--|
| Line Under Test         | Characteristics                                      | Test Levels | Criteria |  |  |  |  |
|                         | Wave-shape data                                      | 1.2/50 µs   |          |  |  |  |  |
| line to line with       | 2Ω impedance                                         | ± 1.0 kV    | В        |  |  |  |  |
| line to earth with      | line to earth with $12\Omega$ impedance $\pm 2.0$ kV |             |          |  |  |  |  |
| Note in addition to the | C 61000-4-5                                          |             |          |  |  |  |  |
| should also be satisfi  | ed.                                                  |             |          |  |  |  |  |

| Ir                     | Performance                                                                                               |             |          |  |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------|-------------|----------|--|--|--|--|
| Line Under Test        | Characteristics                                                                                           | Test Levels | Criteria |  |  |  |  |
|                        | Wave-shape data                                                                                           | 1.2/50 µs   |          |  |  |  |  |
| line to line with      | $2\Omega$ impedance                                                                                       | ± 0.5 kV    | В        |  |  |  |  |
| line to earth with     |                                                                                                           |             |          |  |  |  |  |
| Applicable only to por | ine to earth with12Ω impedance±1.0 kVApplicable only to ports interfacing with long distance lines(>30m). |             |          |  |  |  |  |

| Por                                                                                                                                                                                                                                                                                                                                                                                                         | Performance                                 |           |   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------|---|--|
| Line Under Test                                                                                                                                                                                                                                                                                                                                                                                             | Line Under Test Characteristics Test Levels |           |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                             | Wave-shape data                             | 1.2/50 µs | В |  |
| line to earth with                                                                                                                                                                                                                                                                                                                                                                                          | В                                           |           |   |  |
| Applicable only to ports interfacing with long distance lines(>30m).<br>Where the normal functioning cannot be achieved because of the impact of the coupling/decoupling network (CDN) on the EUT, the test shall be done with the reduced functionality. A rationale shall be given in the test report for doing so. After the test and the removal of the CDN, the normal function shall not be affected. |                                             |           |   |  |

### 2.9.3 Test Setup

N/A

#### 2.9.4 Test Location

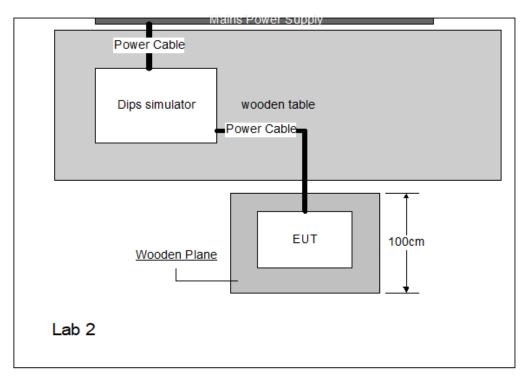
This test was carried out in EMS Test Location.

## 2.9.5 Test Results

Results for Configuration and Mode: N/A

Performance assessment of the EUT made during this test: N/A

Remark: For DC power port and signal port, the connecting cable less than 3m, not applicable to these ports.




### 2.10 Voltage dips, short interruptions and voltage variations immunity tests

#### 2.10.1 Test Method

The equipment under test including associated cabling was configured, on a 0.8 m non-conductive table for table-top equipment and on a 0.1 m insulated support for floor standing equipment above a ground reference plane all within a test laboratory.

Using a programmable power supply the equipment under test was subjected to the detailed supply voltage dips and interruptions. The required supply phase synchronization and test repetition rate, detailed, was controlled by the programmable power supply. During this testing any anomalies in the equipment under tests performance was recorded.





## 2.10.2 Specification Limits

|                                                                                     | Voltage Dips          |                         |           |                         |  |  |
|-------------------------------------------------------------------------------------|-----------------------|-------------------------|-----------|-------------------------|--|--|
| Voltage Dips<br>in % UT                                                             | Test level<br>in % UT | Duration                |           | Performance<br>Criteria |  |  |
|                                                                                     |                       | 50Hz                    | 60Hz      |                         |  |  |
| 100                                                                                 | 0                     | ½ cycle                 | ½ cycle   | В                       |  |  |
| 100                                                                                 | 0                     | 1 cycle                 | 1 cycle   | В                       |  |  |
| 30                                                                                  | 70                    | 25 cycles               | 30 cycles | С                       |  |  |
| 0                                                                                   | 100                   | 250 cycles 300 cycles C |           |                         |  |  |
| UT is the rated voltage of the Equipment Under Test<br>Only apply to AC power ports |                       |                         |           |                         |  |  |

#### 2.10.3 Test Setup

N/A

#### 2.10.4 Test Location

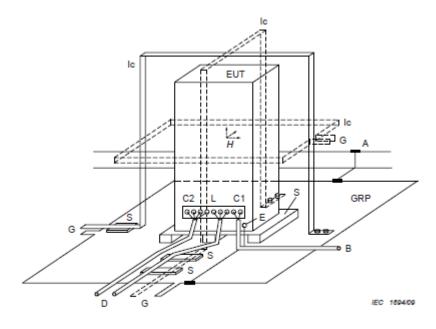
This test was carried out in EMS Test Location.

### 2.10.5 Test Results

Results for Configuration and Mode: N/A

Performance assessment of the EUT made during this test:  $\ensuremath{\mathsf{N/A}}$ 

Remark: only applicable AC mains port.




#### 2.11 Power-frequency magnetic field immunity test

#### 2.11.1 Test Method

The ground plane (GRP) shall be placed in the laboratory; the floor standing EUT and auxiliary test equipment shall be placed on it and connected to GRP or to earth terminal. The ground plane shall be a non-magnetic metal sheet (copper or aluminium) of 0,25 mm minimum thickness; other metals may be used but in this case they shall have at least 0,65 mm minimum thickness. The minimum size of the ground plane is 1 m × 1 m. The final size depends on the dimensions of the floor standing EUT. The ground plane shall be connected to the safety earth system of the laboratory.

The equipment is configured and connected to satisfy its functional requirements. Floor standing equipment shall be placed on the GRP with the interposition of a 0,1 m thickness insulating support (e.g. dry wood). For table top equipment see Figure 3. The equipment cabinets which can be earthed shall be connected to the safety earth directly on the GRP or via the earth terminal to PE. The power supply, input and output circuits shall be connected to the sources of power supply, control and signal. The cables supplied or recommended by the equipment manufacturer shall be used. In absence of any recommendation, unshielded cables shall be adopted, of a type appropriate for the signals involved. All cables shall be exposed to the magnetic field for 1 m of their length. The back filters, if any, shall be inserted in the circuits at 1 m cable length from the EUT and connected to the ground plane. The communication lines (data lines) shall be connected to the EUT by the cables given in the technical specification or standard for this application.



#### Components

GRP Ground plane

- A Safety earth
- S Insulating support
- EUT Equipment under test
- Ic Inductive coil
- E Earth terminal
- C1 Power supply circuit
- C2 Signal circuit
- L Communication line
- B To power supply source
- D To signal source, simulator
- G To the test generator



## 2.11.2 Specification Limits

| Rec                      | Performance |           |          |
|--------------------------|-------------|-----------|----------|
| Operating Frequency (Hz) | Level (A/m) | Dwell (s) | Criteria |
| 50                       | 3           | 300       | А        |
| 60                       | 3           | 300       | A        |

## 2.11.3 Test Setup



## 2.11.4 Test Location

This test was carried out in EMS Test Location.

#### 2.11.5 Test Results

Results for Configuration and Mode: DC power/TM1 and TM2 Performance assessment of the EUT made during this test: Pass Detailed results are shown below.

Test date: 2023-01-04



| Rec                      | Performance |           |          |
|--------------------------|-------------|-----------|----------|
| Operating Frequency (Hz) | Level (A/m) | Dwell (s) | Criteria |
| 50                       | 3           | 300       | А        |
| 60                       | 3           | 300       | А        |

Remark: No observable changes.



## **3 Test Equipment Information**

## 3.1 General Test Equipment Used

## Radiated Emission Test (SAC-3 area)

| DESCRIPTION                               | MANUFACTURER    | MODEL NO.        | EQUIPMENT ID   | SERIAL NO. | CAL. DUE<br>DATE |
|-------------------------------------------|-----------------|------------------|----------------|------------|------------------|
| EMI Test Receiver                         | Rohde & Schwarz | ESR 26           | 64-2-63-20-003 | 101702     | 2023-11-23       |
| Trilog Super<br>Broadband Test<br>Antenna | Schwarzbeck     | VULB 9162        | 64-2-62-20-001 | 00341      | 2023-12-28       |
| Trilog Super<br>Broadband Test<br>Antenna | Schwarzbeck     | VULB 9162        | 64-2-62-22-011 | 00562      | 2023-10-10       |
| Horn Antenna                              | Schwarzbeck     | BBHA 9120D       | 64-2-62-20-004 | 02152      | 2023-12-26       |
| Active Loop<br>Antenna                    | Schwarzbeck     | FMZB 1513-<br>60 | 64-2-62-21-012 | 00041      | 2023-12-08       |
| Pre-amplifier                             | Rohde & Schwarz | SCU08F1          | 64-2-28-20-010 | 101016     | 2023-11-23       |
| Pre-amplifier                             | Rohde & Schwarz | SCU08F2          | 64-2-28-20-005 | 100742     | 2023-11-23       |
| Pre-amplifier                             | Rohde & Schwarz | SCU 18           | 64-2-28-20-011 | 100759     | 2023-11-23       |
| 3m Semi-anechoic chamber                  | TDK             | SAC-3            | 64-2-90-20-004 |            | 2024-01-27       |

## Conducted Emission Test(CIR area)

| DESCRIPTION                                   | MANUFACTURER                            | MODEL NO.          | EQUIPMENT ID   | SERIAL NO.              | CAL. DUE<br>DATE |
|-----------------------------------------------|-----------------------------------------|--------------------|----------------|-------------------------|------------------|
| Receiver (9K-<br>3GHz)                        | Rohde & Schwarz                         | ESCI               | 64-2-63-08-001 | 100727                  | 2023-05-24       |
| LISN                                          | Rohde & Schwarz                         | ENV4200            | 64-2-60-18-001 | 1107.2387.0<br>4-100435 | 2023-12-20       |
| LISN                                          | Rohde & Schwarz                         | ENV216             | 64-2-60-07-001 | 3506.6550.0<br>5        | 2023-05-23       |
| LISN                                          | SCHWARZBECK                             | NNLK-8140          | 64-2-60-20-001 | 00136                   | 2023-11-23       |
| LISN                                          | SCHWARZBECK                             | NNLK-8140          | 64-2-60-20-002 | 00137                   | 2023-11-23       |
| LISN                                          | SCHWARZBECK                             | NNLK-8140          | 64-2-60-20-003 | 00138                   | 2023-11-23       |
| LISN                                          | SCHWARZBECK                             | NNLK-8140          | 64-2-60-20-004 | 00139                   | 2023-11-23       |
| LISN                                          | SCHWARZBECK                             | NSLK8163           | 64-2-60-20-006 | 05018                   | 2023-11-23       |
| ISN                                           | Rohde & Schwarz                         | ENY81              | 64-2-60-20-008 | 100389                  | 2023-12-14       |
| ISN                                           | Rohde & Schwarz                         | ENY81-CA6          | 64-2-60-20-009 | 101887                  | 2023-05-23       |
| High Voltage<br>Probe                         | Schwarzbeck                             | TK9420(VT9<br>420) | 64-2-69-20-001 | 00473                   | 2023-12-14       |
| RF Current Probe                              | Rohde & Schwarz                         | EZ-17              | 64-2-69-20-009 | 101416                  | 2023-11-22       |
| RF Switch Box                                 | Compliance<br>Direction Systems<br>Inc. | RSU-M314-N         | 64-2-60-08-001 | 08042801                | 2023-05-23       |
| High Impedance<br>Capacitive<br>Voltage Probe | Schwarzbeck                             | CVP9222C           | 64-2-69-20-013 | 00050                   | 2023-11-23       |
| Shielding Room                                | TDK                                     | CIR                | 64-2-90-20-001 |                         | 2023-10-16       |



#### Electrostatic Discharge Test(ESD area)

| DESCRIPTION      | MANUFACTURER | MODEL NO. | EQUIPMENT ID   | SERIAL NO. | CAL. DUE<br>DATE |
|------------------|--------------|-----------|----------------|------------|------------------|
| ESD<br>Generator | EMTEST       | ESD NX30  | 64-2-75-20-009 | 23124      | 2023-09-02       |

#### Radiated Immunity Test(CAC-3 area)

| DESCRIPTION                        | MANUFACTURER    | MODEL NO.           | EQUIPMENT ID   | SERIAL NO. | CAL. DUE<br>DATE |
|------------------------------------|-----------------|---------------------|----------------|------------|------------------|
| Signal Generator                   | Rohde & Schwarz | SMB100B             | 64-2-64-20-001 | 101903     | 2023-11-23       |
| Power Amplifier                    | Rohde & Schwarz | BBA150-<br>BC500    | 64-2-28-20-002 | 104061     | 2023-11-22       |
| Power Amplifier                    | Rohde & Schwarz | BBA150-<br>D110E100 | 64-2-28-20-003 | 104048     | 2023-11-22       |
| Microwave Log-<br>Periodic Antenna | Schwarzbeck     | STLP9129<br>SET     | 64-2-62-20-002 | 3074       | N/A              |
| Average Power<br>Sensor            | Rohde & Schwarz | NRP6AN              | 64-2-32-20-001 | 101424     | 2023-11-22       |
| Average Power<br>Sensor            | Rohde & Schwarz | NRP6AN              | 64-2-32-20-002 | 101425     | 2023-11-22       |
| 3m FAC Chamber                     | TDK             | CAC-3               | 64-2-90-20-003 |            | 2024-01-27       |

## Electrical Fast Transients Test(EMS area)

| DESCRIPTION                                | MANUFACTURER | MODEL NO.      | EQUIPMENT<br>ID | SERIAL NO.  | CAL. DUE<br>DATE |
|--------------------------------------------|--------------|----------------|-----------------|-------------|------------------|
| Compact<br>Simulator                       | EMTEST       | UCS<br>500N7.7 | 64-2-75-20-010  | P1949235471 | 2023-11-22       |
| 3-phase<br>coupling/decouplin<br>g network | EMTEST       | CNI 503B9.4    | 64-2-60-20-054  | P1740204286 | 2023-11-22       |
| Capacitive<br>Coupling Clamp               | EMTEST       | CCI            | 64-2-69-20-014  | P2009239178 | 2023-11-22       |

## Conducted Immunity Test(EMS area)

| DESCRIPTION                        | MANUFACTURER | MODEL NO.            | EQUIPMENT ID   | SERIAL NO. | CAL. DUE<br>DATE |
|------------------------------------|--------------|----------------------|----------------|------------|------------------|
| Compact immunity test systemr      | TESEQ        | NSG 4070C-<br>110    | 64-2-75-20-008 | 56172      | 2023-11-23       |
| 6dB Attenuator                     | TESEQ        | ATN 6150             | 64-2-65-20-003 | 20011501   | 2023-11-22       |
| Coupling/<br>Decoupling<br>Network | EM TEST      | CDN M016S            | 64-2-60-20-039 | 56466      | 2023-11-22       |
| Coupling/<br>Decoupling<br>Network | EMTEST       | CDN M5-100-<br>750VS | 64-2-60-20-042 | 54984      | 2023-11-22       |
| Current injection<br>probe         | EMTEST       | CIP 9136A            | 64-2-69-20-010 | 56220      | 2023-11-22       |
| EM Clamp                           | TESE Q       | KEMA 801A            | 64-2-69-20-007 | 56676      | 2023-11-23       |



## Power-frequency magnetic field Test(EMS area)

| DESCRIPTION                                     | MANUFACTURER    | MODEL NO.           | EQUIPMENT<br>ID         | SERIAL NO.            | CAL. DUE<br>DATE |
|-------------------------------------------------|-----------------|---------------------|-------------------------|-----------------------|------------------|
| Multifunctional<br>threephase<br>voltage source | EMTEST          | NetWave<br>67.3-400 | 64-2-09-20-<br>011      | P2009239095           | 2023-11-23       |
| Helmholtz<br>Coils                              | Schwarzbec<br>k | HHS 5215-<br>100    | 64-2-62-20-<br>011      | HHS 5215-<br>100 #111 | 2023-12-20       |
| magnetic field coil                             | EMTEST          | MS 100N             | 64-2-62-20-<br>012      | P2007238680           | -                |
| current<br>transformer                          | EMTEST          | MFT 30              | 64-2-62-20-<br>012-A001 | P2142257128           | 2023-12-20       |
| current<br>transformer                          | EMTEST          | MFT 100-230         | 64-2-62-20-<br>012-A002 | P2236267172           | 2023-12-20       |



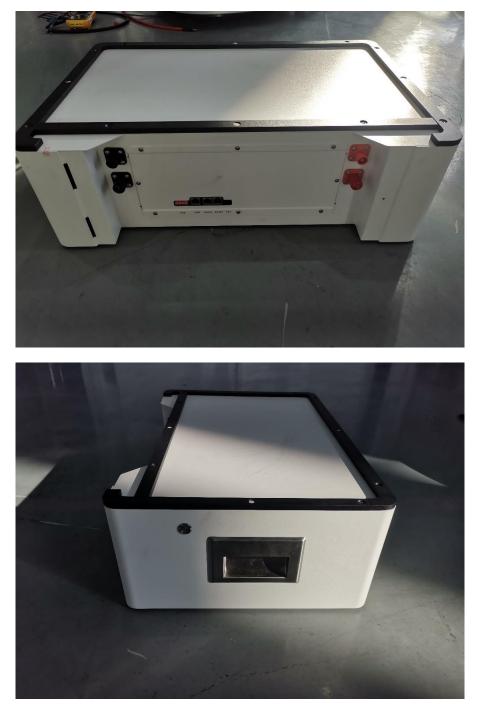
## 4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

| System Measurement Uncertai                                | System Measurement Uncertainty |  |  |  |  |
|------------------------------------------------------------|--------------------------------|--|--|--|--|
| Test Items                                                 | Extended Uncertainty           |  |  |  |  |
| Uncertainty for Radiated Emission in 3m chamber 30MHz-     | Horizontal: 5.13dB;            |  |  |  |  |
| 1000MHz                                                    | Vertical: 5.20dB;              |  |  |  |  |
| Uncertainty for Radiated Emission in 10m chamber 30MHz-    | Horizontal: 5.00dB;            |  |  |  |  |
| 1000MHz                                                    | Vertical: 5.10dB;              |  |  |  |  |
| Uncertainty for Radiated Emission in 3m chamber 1000MHz-   | Horizontal: 5.02dB;            |  |  |  |  |
| 18000MHz                                                   | Vertical: 5.02dB;              |  |  |  |  |
| Uncertainty for Radiated Emission in 10m chamber 1000MHz-  | Horizontal: 5.01dB;            |  |  |  |  |
| 18000MHz                                                   | Vertical: 5.01dB;              |  |  |  |  |
| Uncertainty for Conducted Emission 9kHz-150KHz             | 3.52dB                         |  |  |  |  |
| Uncertainty for Conducted Emission 150kHz-30MHz            | 3.21dB                         |  |  |  |  |
| Uncertainty for Radiated Electromagnetic Disturbance 9KHz- | 3.20dB                         |  |  |  |  |
| 30MHz                                                      |                                |  |  |  |  |
| Uncertainty for Harmonic test                              | 3.16%                          |  |  |  |  |
| Uncertainty for Flicker test                               | 4.69%                          |  |  |  |  |
| Uncertainty for RS test                                    | 2.08dB                         |  |  |  |  |
| Uncertainty for CS test                                    | 2.15dB (CDN)                   |  |  |  |  |
|                                                            | 3.25dB (Clamp)                 |  |  |  |  |
| Uncertainty for ESD test                                   | The immunity measurement       |  |  |  |  |
| Uncertainty for EFT test                                   | system uncertainty is within   |  |  |  |  |
| Uncertainty for Surges test                                | standard requirement and is    |  |  |  |  |
| Uncertainty for PFMF test                                  | based on a standard            |  |  |  |  |
| Uncertainty for Voltage Dips, Voltage Variations and Short | uncertainty multiplied by a    |  |  |  |  |
| Interruptions Test                                         | coverage factor k=2, providing |  |  |  |  |
|                                                            | a level of confidence of       |  |  |  |  |
|                                                            | approximately 95%.             |  |  |  |  |

#### Remark:

Measurement Uncertainty Decision Rule


Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2007, clause 4.4.3 and 4.5.1.



# 5 Photographs





