

Application

The BS 6622 12.7/22kV XLPE PVC Armoured Cable is specifically designed for medium voltage power networks, suitable for underground installations and cable ducting. This cable ensures reliable power transmission while offering robust protection against mechanical damage and environmental factors.

Performance

Electrical Performance: U0/U: 12.7/22 (24) kV

Chemical Performance: Resistant to chemicals, UV radiation, and oil

Mechanical Performance:

Single Core: Fixed: 15 x overall diameter 3 Core: Fixed: 12 x overall diameter

Single Core (adjacent to joint or termination): 12 x overall diameter Three Core (adjacent to joint or termination): 10 x overall diameter

Terminal Performance: Fixed: 0°C to +90°C

Fire Performance:

Flame Retardant according to IEC/EN 60332-1-2 Standard

Construction

Conductor: Class 2 stranded copper conductor

Insulation: Semi-conductive XLPE (Cross-Linked Polyethylene)

Insulation Screen: Semi-conductive XLPE

Metallic Screen: Individual or collective overall copper tape screen

Filler: PET (Polyethylene Terephthalate) fibres

Separator: Binding tape

Bedding: PVC (Polyvinyl Chloride)

Single Core: AWA (Aluminium Wire Armoured) Multi-core: SWA (Steel Wire Armoured) Sheath: PVC (Polyvinyl Chloride) Sheath Colour: Red Black

Specification

-BS 6622, IEC/EN 60228 Standard

Fastful Cable Lab

We have CNAS Accredited Facility to assure conformity assessment services with a focus on quality, expertise, and customer satisfaction.

CNAS has international mutual recognition among IAF, ILAC, APLAC and PAC.

Accreditation

We meet the requirements of ISO9001, ISO14001, ISO45001 and ISO50001 and our cables have certificate of CCC, RoHS, CASC, UL, cUL, TÜV Rhineland and CCS.

National Green Factory

Our facility has been awarded of National Green Factory by Ministry of Industry and Information Technology of China. We are committed to the development of high-end, intelligent and green manufacturing industry.

*The overall energy consumption level of green factories is better than the energy efficiency benchmark level.

Technical Parameters

			Ph	nysical Performan	ce			
No. of Cores	Nominal Cross Section Area	Min. Thickness		Nominal Thickness Of Semi Conductive Layer		Nominal Dia.		Conductor D.C Resistance at
		Insulation	Outer Sheath	Inner	Outer	Over Insulation	Overall	20 °C
-	mm^2	mm	mm	mm	mm	mm	mm	Ω/km
1	50	4.85	1.4	0.5	0.8	21.3	32	0.497
1	70	4.85	1.48	0.5	0.8	23	34	0.344
1	95	4.85	1.48	0.5	0.8	24.6	36	0.248
1	120	4.85	1.56	0.5	0.8	26	37	0.196
1	150	4.85	1.56	0.5	0.8	27.7	40	0.16
1	185	4.85	1.64	0.5	0.8	29.3	41	0.128
1	240	4.85	1.72	0.5	0.8	31.8	45	0.098
1	300	4.85	1.8	0.5	0.8	34	47	0.08
1	400	4.85	1.88	0.5	0.8	36.7	50	0.064
1	500	4.85	1.96	0.5	0.8	39.7	53	0.051
1	630	4.85	2.04	0.5	0.8	44	58	0.042
3	50	4.85	2.2	0.5	0.8	21.3	61	0.497
3	70	4.85	2.28	0.5	0.8	23	65	0.344
3	95	4.85	2.44	0.5	0.8	24.6	69	0.248
3	120	4.85	2.52	0.5	0.8	26	74	0.196
3	150	4.85	2.68	0.5	0.8	27.7	78	0.16
3	185	4.85	2.76	0.5	0.8	29.1	81	0.128
3	240	4.85	2.84	0.5	0.8	31.8	87	0.098
3	300	4.85	3	0.5	0.8	34	93	0.08
3	400	4.85	3.24	0.5	0.8	36.7	100	0.064
3	500	4.85	3.4	0.5	0.8	39.7	107	0.051

Technical Parameters

	Electrical Performance	e(Current Carrying Capacity of	Copper Conductor)	
No. of Comme	Naminal Orosa Castian Area	Current Carry	Conductor Losses in the	
No. of Cores	Nominal Cross Section Area	in ground (20 °C)	in air (30 °C)	Ground
-	mm ²	А	А	kW/km
1	50	250	279	31.1
1	70	304	347	31.8
1	95	361	420	32.3
1	120	407	483	32.47
1	150	445	540	31.68
1	185	498	614	31.74
1	240	569	718	31.73
1	300	633	813	32.1
1	400	686	904	30.1
1	500	756	1011	29.1
1	630	820	1030	28.2
3	50	210	206	65.75
3	70	256	257	67.63
3	95	307	313	70.12
3	120	349	360	71.62
3	150	392	410	73.76
3	185	443	469	75.36
3	240	513	553	77.37
3	300	576	635	79.6
3	400	650	731	81.12
3	500	-	-	-

