TONGYU TECHNOLOGY

GLOBAL THERMAL SOLUTIONS PROVIDER & SUPPLIER

CONTENTS

Factory Show

Quality Management

05 Our Partner

🛞 About Tongyu

- > Founded in 2005 and headquartered in Guangdong, China.
- > Focus on Thermal Solution with 20 years.
- Products covering a large number of industries such as :

Electronic power,

5G communication,

LED lighting,

Smart home,

Computer servers,

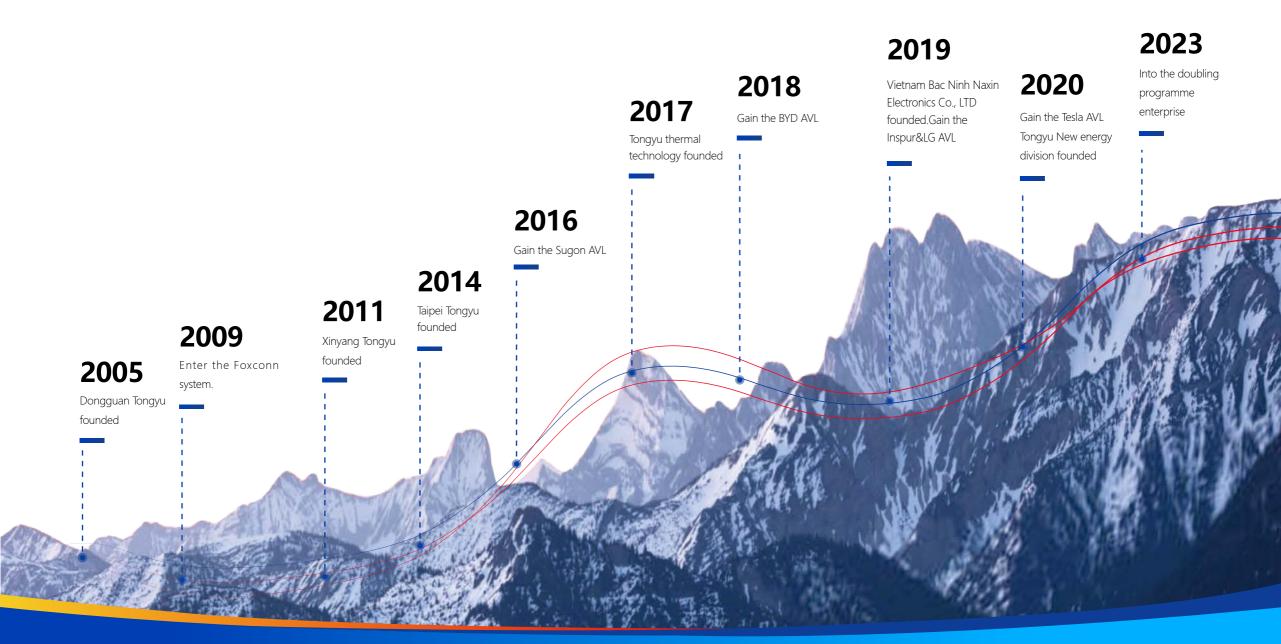
New energy vehicles,

Rail transit,

Energy storage,

Aerospace,

> Have 3 production bases and 3 service centers.



3 R & D centers

Taibei Tongyu industrial Ltd (Taiwan)ToNaxin Electronics Technology Co.,Ltd(Hongkong)XiTongyu Thermal Technology Co., Ltd (China)Vi

3 Production bases

Tongyu Electrinics co. Ltd(Headquarter) Xinyang Tongyu Electronics Co., Ltd(China) Vietnam Bac Ninh Naxin Electronics Co. LTD (Vietnam)

Gertificates & Honors

<complex-block></complex-block>	<image/>	<image/>	<complex-block></complex-block>	IATF 16949	Contraction of the second seco		<text></text>	Hunekey Ma
				新技术	THE STATE	表市同裕电子有限 使 TY 散热技术研究院	 ○ 东莞 5 G Ⅰ 	师范大学工学院 市同裕电子有限公司 这用散热器 合实验室
The second secon	the second secon				And a FORCON Status states area 500	Bet: Register MAXIN_CONSUL States and a ready ready ready ready the constraints of a register and PACING ONE Automatic and ready Recent on the second and ready		

Excellent Supplier Trophies

Headquarter Factory

Factory Building

Office Area

Heat Pipe Workshop

CNC Workshop

Die Casting Workshop

Assembly Workshop

Stamping Workshop

Welding WorkShop

Factory Building

Office Area

CNC Workshop

Friction Welding Workshop

Liquid-Cooling Test Workshop

Tunnal Brazing Workshop

Workshop

Hydraulic Workshop

Vacuum Degassing Workshop

Automatic Bending Machine

Machine Name	Quantities		
Powder Filler	4		
Sintering Furnace	5		
Vacuum Degasser	6		
Water Dispenser	2		
Pipe Bender	10		
Power Screener	4		
Automatic Bending Machine	10		
Total	41		

3 Xinyang Factory

Office Building

Machine Name	Quantities				
CNC	38				
Anode	1				
Sewerage Line	1				
Special Machine	20				
Assembly Lines	8				
Punch	10				
Total	78				

Factory

CNC Workshop

Packaging Workshop

Factory Outside View

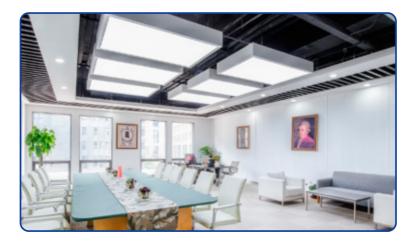
CNC Workshop

Slittering Workshop

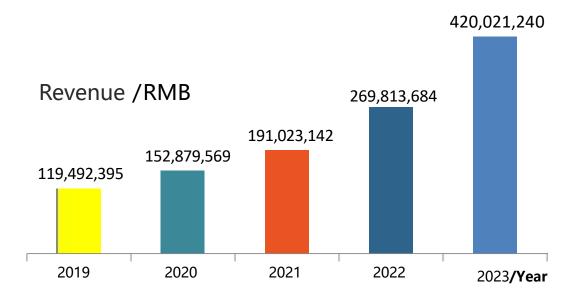
Assembly Workshop

Laboratory

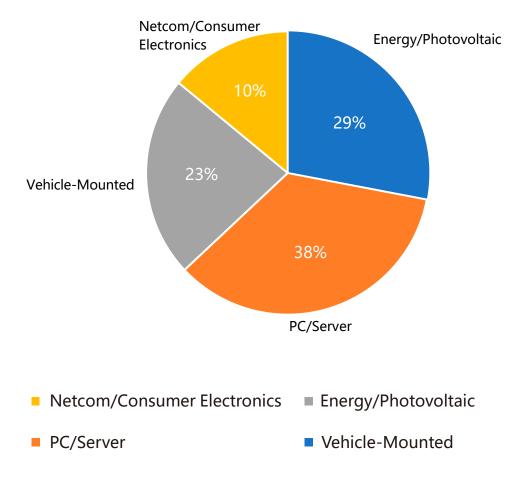
Polishing Workshop


Dongguan Songshan Lake

Dongguan Songshan Lake



Taiwan Tong Yu Industrial Co.



Taipei Office

Comparison of sales in the last 5 years

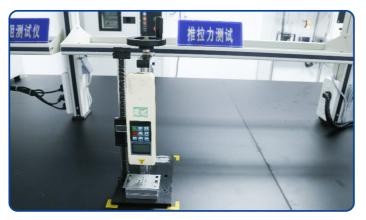
Category	Shipments/month	Monthly production	Moving rate
Extrusion	1500K	2000K	75%
Module Soldering	350K	500K	70%
Water-cooled	6K	15K	40%

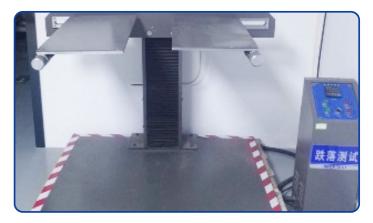
Coordinate Measuring Machine

X Ray Imaging

C-Scan Imaging

Rigidity Tester


Compound Salt Spray Testing Machine


Thermal Shock Chamber

Conductivity Tester

Push-Pull Tester

Drop Tester

Thermal Resistance Tester 1

Thermal Resistance Tester

Wind Tunnel Test

Dongguan Tong Yu Electronic Co., Ltd

Laboratory Area I

Laboratory Area II

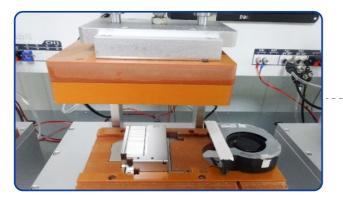
NO	Name	User Department	Statuses	NO	Name	User Department	Statuses
1	2.5 Dimension	Laboratory	ОК	28	Push-Pull Gauge	Laboratory	ОК
2	XRF Tester	Laboratory	ОК	29	Thermohygrometer	Laboratory	ОК
3	Thermal Resistance Tester	Laboratory	ОК	30	Temperature Collector	Laboratory	ОК
4	Fully Automatic Rupture Strength Test	Laboratory	ОК	31	Power Supply	Laboratory	ОК
5	Salt Spray Tester	Laboratory	ОК	32	Power Supply	Laboratory	ОК
6	Drop Test Machine	Laboratory	ОК	33	Digital Pasteurization	Laboratory	ОК
7	Constant Temperature and Humidity Tester	Laboratory	ОК	34	Rubber Hardness Measurement	Laboratory	ОК
8	Power Supply	Laboratory	ОК	35	Programmable Thermostat	Laboratory	ОК
9	Quantitatively Fast	Laboratory	ОК	36	Pencil Scratch Synthesis	Laboratory	ОК
10	Film Thickness Tester	Laboratory	ОК	37	Pressure Roller Tensile Strength	Laboratory	ОК
11	Weights	Laboratory	ОК	38	Sharp Edge Measurement	Laboratory	ОК
12	Electronic Weighing Scale	Laboratory	ОК	39	Rubber Hardness Measurement	Laboratory	ОК
13	Glossy Ring Gauge	Laboratory	ОК	40	Push-Pull Gauge	Laboratory	ОК
14	Thermal Conductivity Tester	Laboratory	ОК	41	Thermal Conductivity Tester	Laboratory	ОК
15	Illumination Tester	Laboratory	ОК	42	Digital DC	Laboratory	ОК
16	Conductivity Tester	Laboratory	ОК	43	Quantitatively Fast	Laboratory	ОК
17	Roughness Tester	Laboratory	ОК	44	Endoscopic Testing	Laboratory	ОК
18	Hundred Gauge Tester	Laboratory	ОК	45	Drop Shot (Athletics Event)	Laboratory	ОК
19	3rd Dimension	Laboratory	ОК	46	Initial Adhesion Test	Laboratory	ОК
20	Thermohygrometer	Laboratory	ОК	47	Thermohygrometer	Laboratory	ОК
21	Withstand Voltage Tester	Laboratory	ОК	48	X-Ray imaging	Laboratory	ОК
22	Multi-Circuit Temperature Tester	Laboratory	ОК	49	Ultrasonic C-scan	Laboratory	ОК
23	Sealing Inspection System	Laboratory	ОК	50	Sealing Inspection System	Laboratory	ОК
24	Mini-Digital Torque Wrench	Laboratory	ОК	51	Gas Chromatography	Laboratory	ОК
25	Fan Speed Tester	Laboratory	ОК	52	Vickers Hardness Tester	Laboratory	ОК
26	Automatic Radiator Performance Measurement	Laboratory	ОК	53	Spectrophotometer	Laboratory	ОК
27	Electronic Digital Display Spring Tensile Test	Laboratory	ОК				

Overview of monitoring and measuring equipment

Power Screening Machine

Backplane Full Checker

Bursting Test Mmachine


Hall Flow Meter

Helium Leak Detector

Heat Pipe Thermal Resistance Testing

Module Thermal Resistance Test

Module Thermal Resistance Tester

Heat Pipe Thermal Resistance Tester

IEEE: FC-2087	测	试参数访			用户与关
SI 11 1 SI 11 SI 1		(#15년) (H214년) (H11년) (H11년)	35111	新增/保存 新增/保存	剧除料号
22119 202017 000 5 2219219 000.0 T 2219579 000.0 T 219579 000.0 T 210579 000.0 T	X82282 000.0 T NAIR 000.0 T NAIR 000.0 T NAIR 000.0 T NAIR 000.0 T	启动模式 001 - 条約483 - 条約483 - 条約483 - 条約483 - 条約483		CH2	2 090.0 1 2 090.0 1 2 090.0 1 2 090.0 1
12 An 12 F 1996 B	1271 000.0 T 1524512 0.150 T 1524512 0.000 T	● 前面状態 截取起始位: 01 截取位数: 08 (1) 截到的码: 011133 利新码: 012345	8001231 200 5 अन्द्रश्च 4000 1079	6448 6548	3 060.0 823 0.150 873 0.000
tang - 2 and an CH3	1000.0 C		2004 10 000.0 0		12 010.0 12 010.0 12 015.0 12 015.0
	513 000 0 1 238 000 0 1 528 3.2 0.500 1 528 3.2 0.500 1 528 3.2 0.000 1	сандачая 001 сандачая 001 понаная 001 оценаная 001	19.01.10.10 1000.00 501112 090 1 Witchin 4000 1075	l stra B	73 060, 0 HL2R 0, 600 HL2R 0, 600

	CH1	则试	中	
科号 SN222		条码	ААААААААА	
50. 0 35. 0 IBEE				
20. 0 05. 0				
90. 0				
75.0				
50. 0	~~~~~			
15. 0 50. 0				
50. 0 15. 0				
0.0	Show of the			
0.0	10:54:10		10:55:40	
9.0 夏 60.0 C 环维基金		27.1	10:55:40	

Automatic Thread Tester

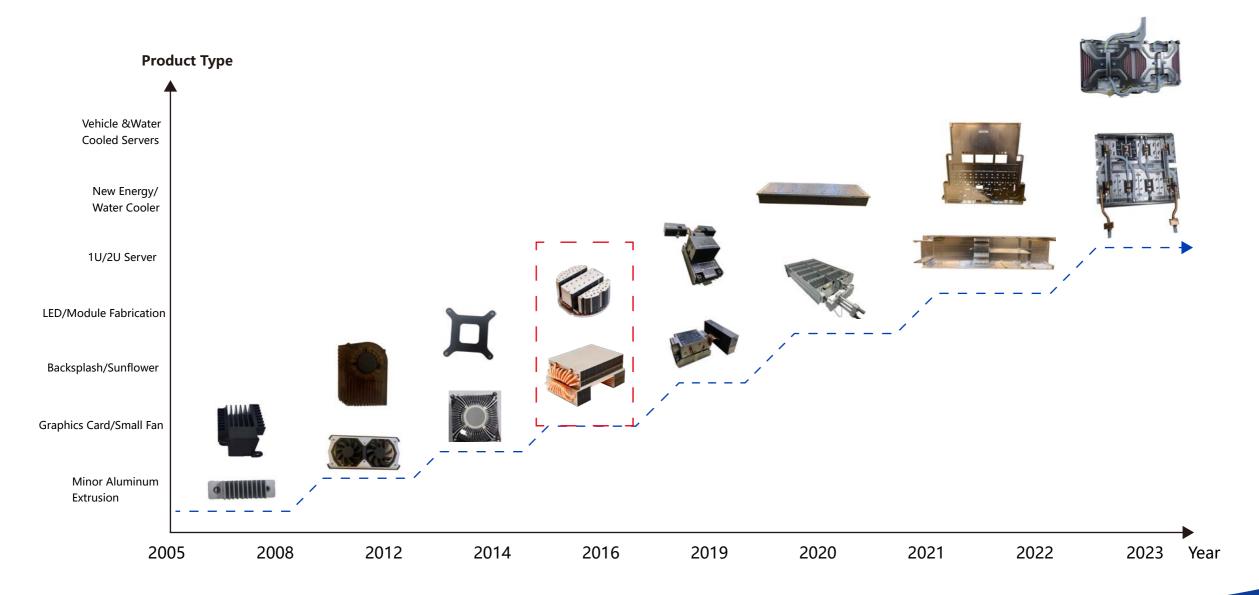
Automatic Thread Tester

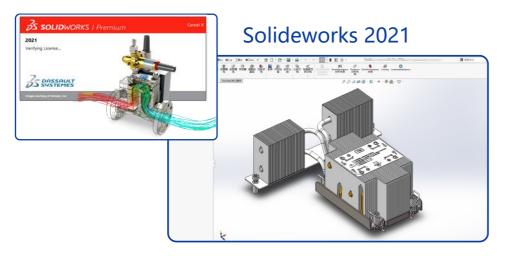
CCD Infrared Detector

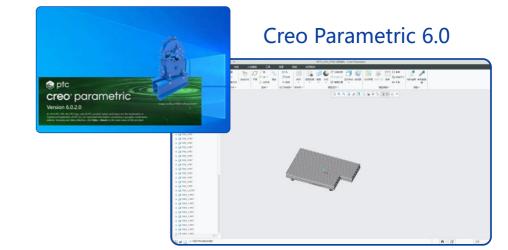
Precision Air Tightness Tester

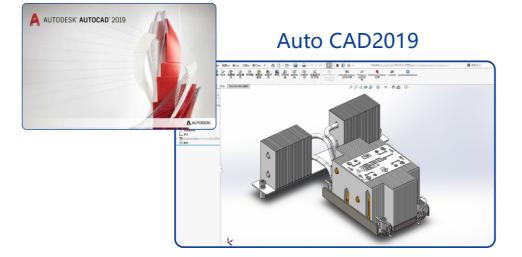
Helium Mass Spectrometer Leak Detector

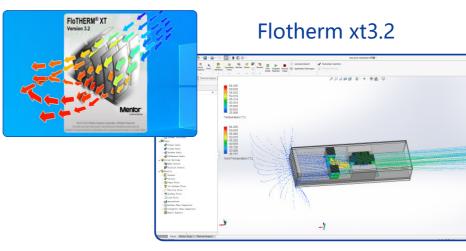
Air Tightness High Pressure Tester

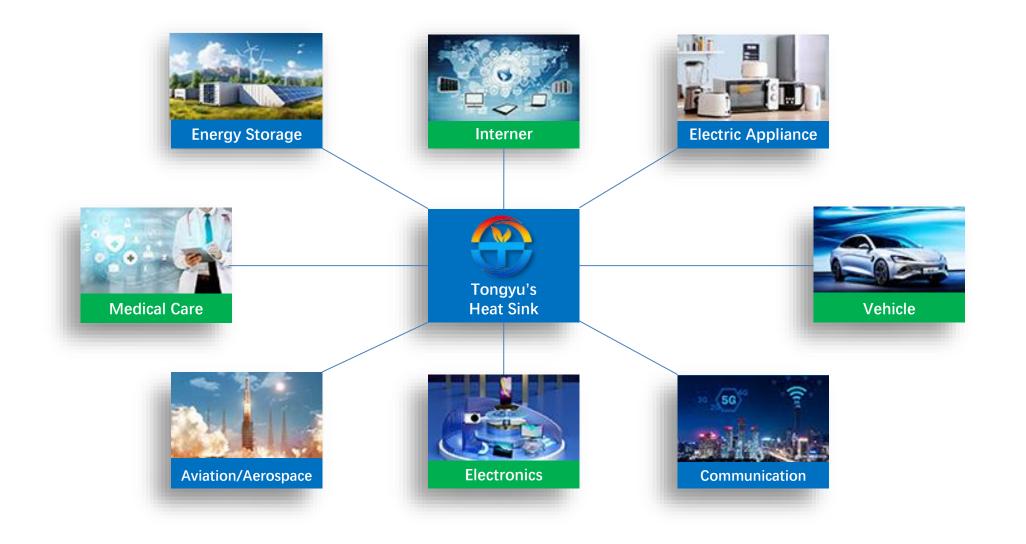



Resistance Tester



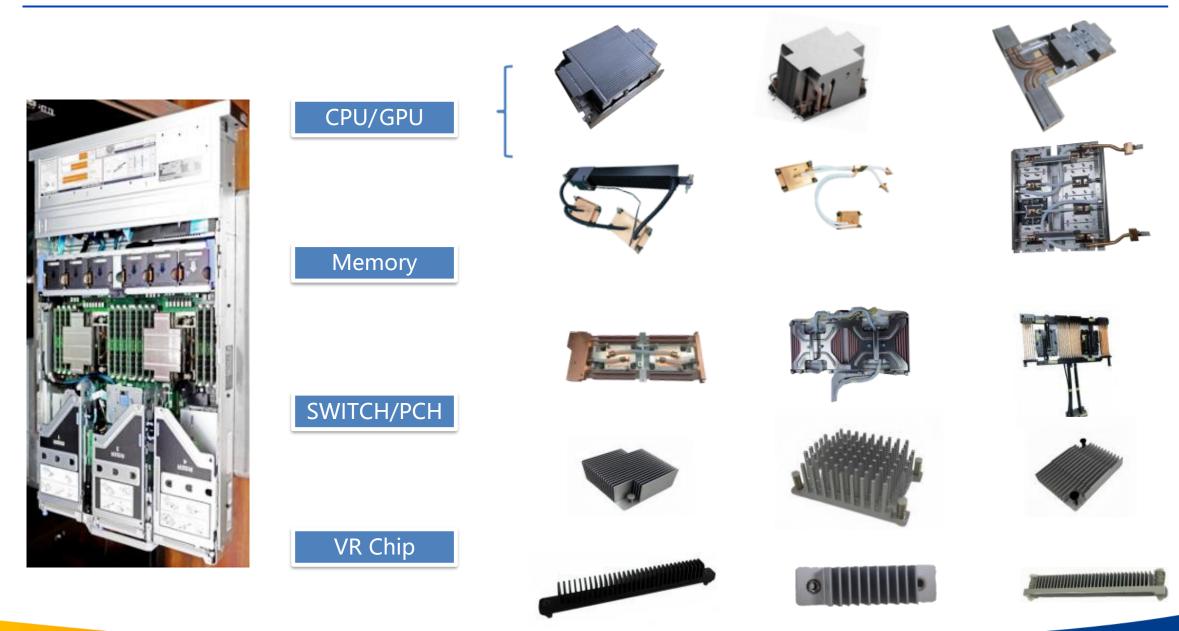

Liquid Channel Drying Equipment & Liquid Channel Cleaning Equipment

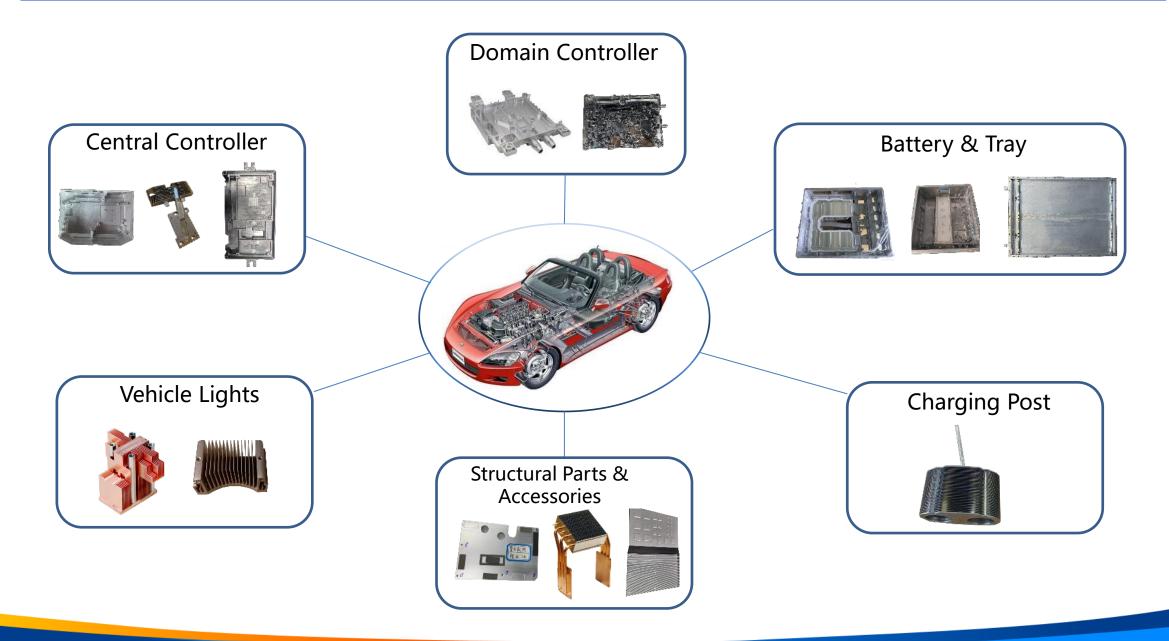


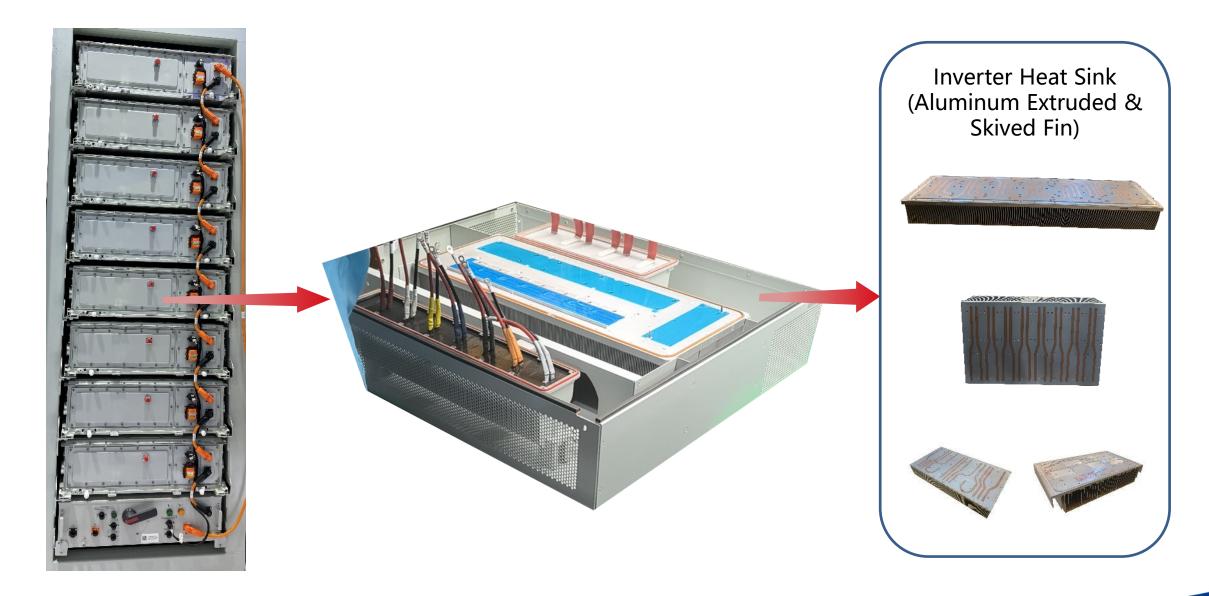


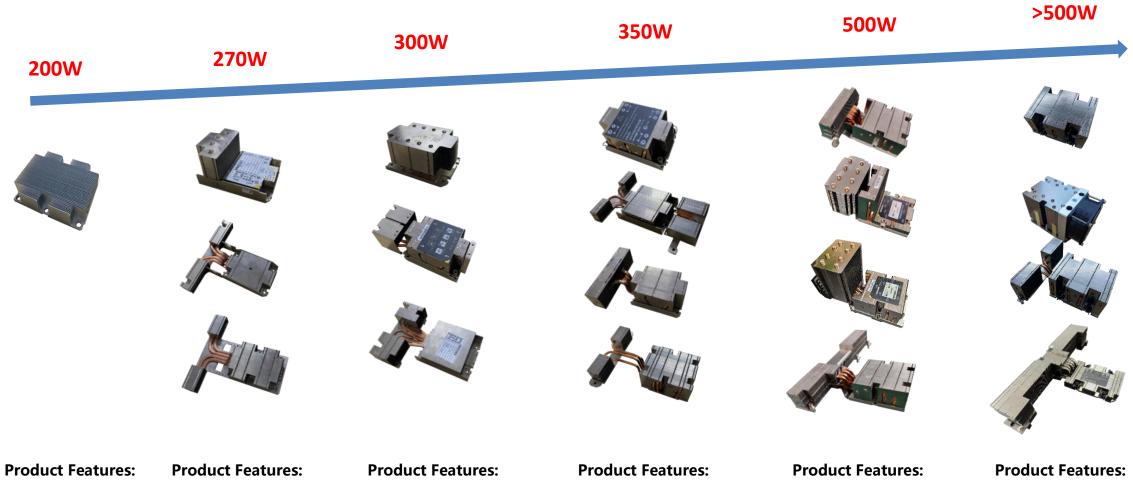
Stage Light

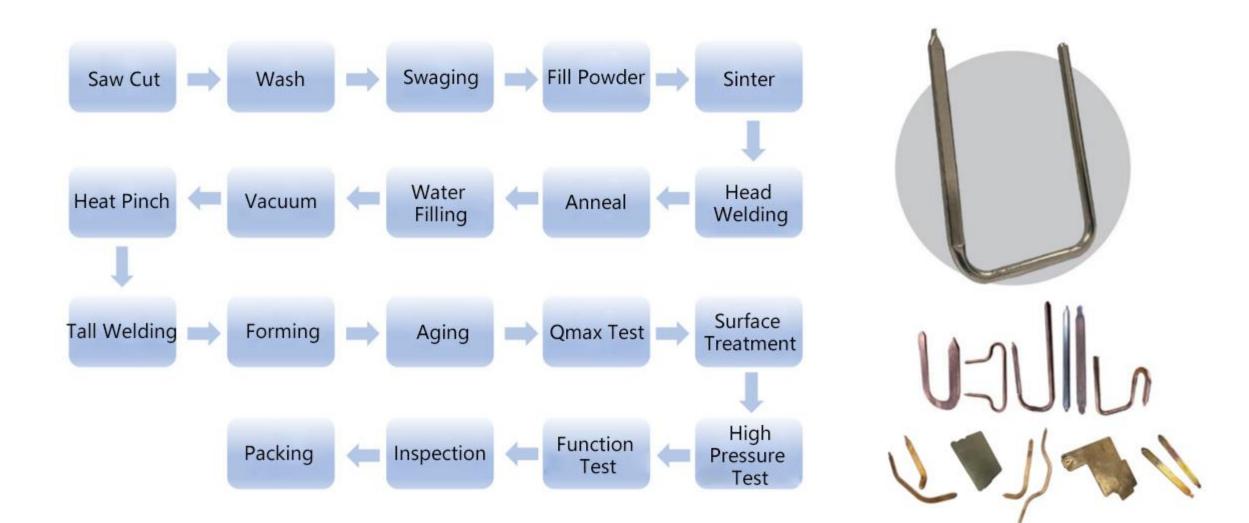
Photography Light











Based on aluminum extrusion and 1U soldering module **Product Features:** Based on L-shaped, 1U EVAC soldering module **Product Features:** Featuring 1.5U EVAC, 2U, 2U EVAC soldering modules

Based on 2U, 1.5U EVAC, 2U EVAC soldering module **Product Features:** Mainly roller tube 2U EVAC, 3U EVAC

Product Features: Roller tube 2U EVAC, 3D VC, AP platform soldering modules mainly

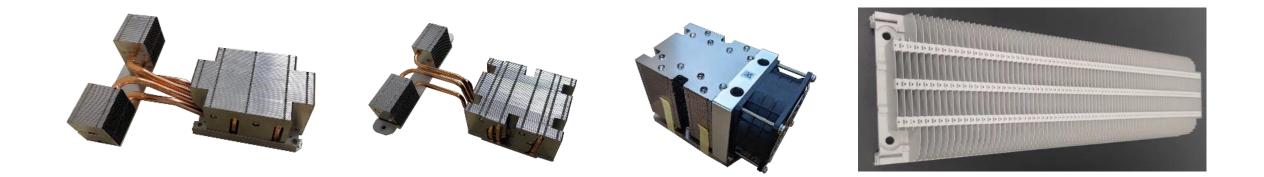
Flat heat sink

round heat sink

Ŧ	宽度 Width	高度 He	eight t	齿距 Distance	齿厚 F	in thickness	平面度Flatness	底板厚	度Base thickness	模具寿命Tooling life
开模的参考数据	10-20	12-16	5	1.4-1.6	齿尖(Tip)(0.5齿根(Root) 0.7	0.05-0.08		2	约(about)2000m
影	20-35	15-25	;	1.7-2.0	齿尖(Tip)(0.5齿根(Root) 0.8	0.08-0.1		2	约(about)2000m
考	35-50	20-30)	1.8-2.3	齿尖(Tip)(0.6齿根(Root) 0.9	0.1-0.12		2.3	约(about)2000m
叙 据	45-60	25-35	5	2.0-2.6	齿尖(Tip)(0.7齿根(Root) 1.1	0.1-0.15		2.2-2.8	约(about)3~4T
	60-80	25-40)	2.0-3.0	齿尖(Tip)(0.8齿根(Root) 1.2	0.12-0.18		2.4-3.0	约(about)3~4T
平模散热器	80-100	25-45	5	2.4-3.2	齿尖(Tip)(0.8齿根(Root) 1.3	0.15-0.2		2.6-3.2	约(about)4~5T
散	100-125	25-50)	2.6-3.4	齿尖(Tip)(0.9齿根(Root) 1.4	0.18-0.25		2.7-3.5	约(about)4~5T
怒器	125-150	25-60)	2.7-3.6	齿尖(Tip):	1.0齿根(Root) 1.5	0.2-0.3		3.0-4.0	约(about)5~6T
	150-165	25-35	;	2.8-4.0	齿尖(Tip):	1.2齿根(Root) 1.6	0.3-0.4		4.0-6.0	约(about)6~7T
표	外径 Outer diameter	实心大小 _{Size}	齿距 Distance	齿厚 Fin th	ickness	挤压速度(米/ Extrusion speed(M/			模温 Tooling temperature	模具寿命 Tooling life
俣 的	50	18-20	1.6-1.8	齿尖(Tip) 0.5齿	根(Root) 0.7	3	470-50)0	450-480	约(about)3~4T
开模的参考数据	60	22-25	1.7-2.0	齿尖(Tip) 0.6齿	根(Root) 0.8	2.7	470-50	00	450-480	约(about)3~4T
^亏 数	70	25-30	1.8-2.2	齿尖(Tip) 0.6齿	根(Root) 0.9	2.5	470-50	00	450-480	约(about)4~5T
据	80	28-35	1.9-2.4	齿尖(Tip) 0.7齿	根(Root) 1.0	2.2	480-51	0	450-480	约(about)5~6T
1	90	35-42	2.0-2.8	齿尖(Tip) 0.8齿	根(Root) 1.1	2	480-51	0	450-480	约(about)6~7T
圆	95	35-44	2.2-2.9	齿尖(Tip) 0.9齿	根(Root) 1.2	1.8	480-51	0	450-480	约(about)6~7T
圆弧散热器	100	35-48	2.4-3.1	齿尖(Tip) 1.0齿	根(Root) 1.3	1.7	480-51	0	450-480	约(about)6~7T
瓶	110	35-52	2.6-3.3	齿尖(Tip) 1.1齿	根(Root) 1.4	1.6	480-51	0	450-480	约(about)6~7T
萮	120	35-54	3.0-3.5	齿尖(Tip) 1.2齿	根(Root) 1.5	1.5	480-51	0	450-480	约(about)6~7T

	¢4	¢5	¢6	¢8
80-100 [MM]	28	40	50	60
101-120 [MM]	35	50	65	73
121-150 [MM]	40	57	72	90
151-180 [MM]	37	52	65	80
181-220 [MM]	32	46	57	70
221-270 [MM]	28	40	50	60
271-320 [MM]	22	32	42	50
321-380 [MM]	15	22	30	35

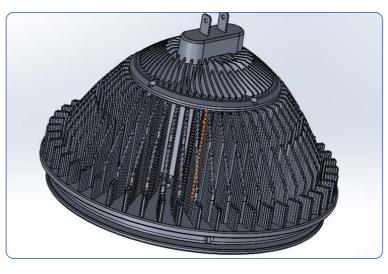
折弯 bends	1	2	3	4	5	6	above6
Loss rate	-5%	-10%	-15%	-20%	-25%	-30%	-30%

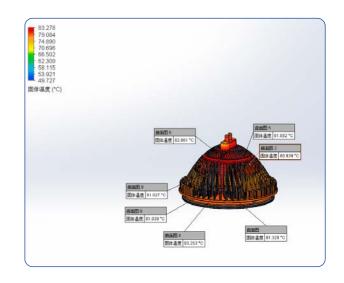

打扁 Thickness	2.0-2.2	2.3-2.7	2.8-3.2	3.3-3.7	3.8-4.2	4.3-4.7	above4.8
Loss rate	-40%	-30%	-20%	-15%	-10%	-5%	0%

Reflow soldering: The part of the heat sink fins and heat pipes that are in contact with each other are soldered together with solder paste.

Currently used solder: solder paste (high, medium and low temperature paste) / aluminum paste

Low temperature solder paste melting point : 138 °C Medium temperature solder paste melting point: 160 ~ 170 °C High temperature solder paste melting point: 210 °C Melting point of aluminum paste: 138 °C

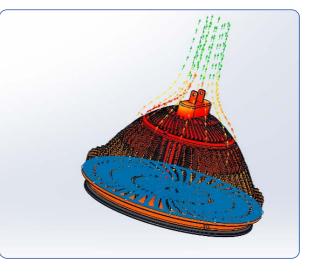


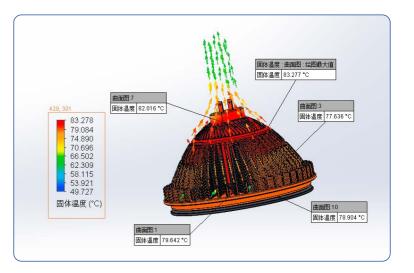


😚 LED - Stage Lighting

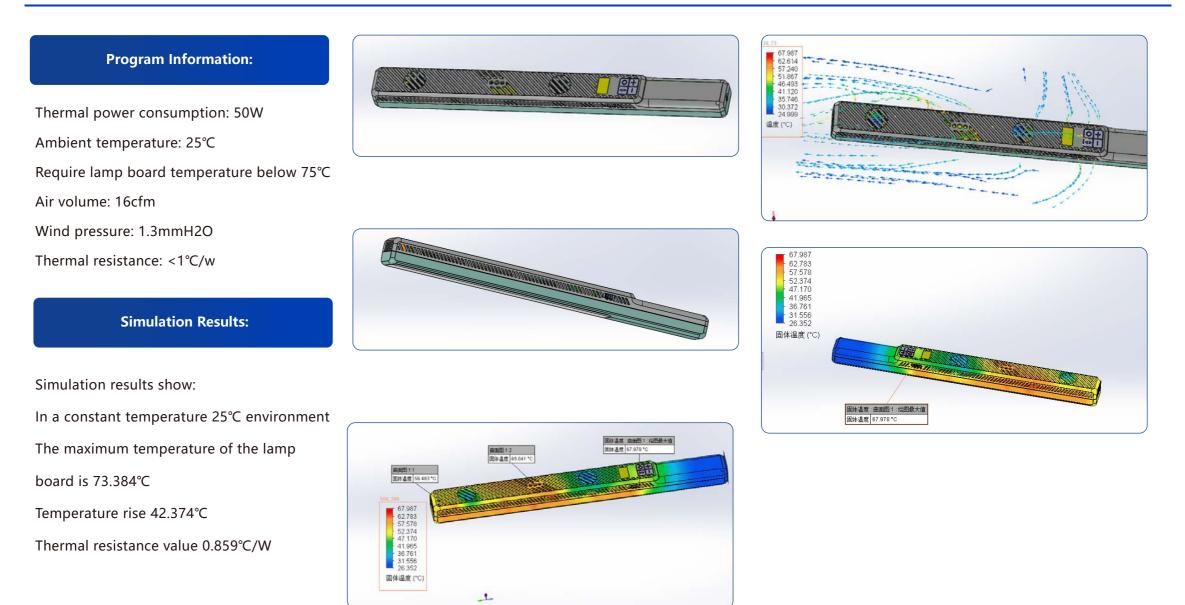
Program Information:

Thermal power consumption: 100W Ambient temperature: 40°C Require lamp board temperature below 85°C natural air cooling Thermal resistance: <0.45°C/w

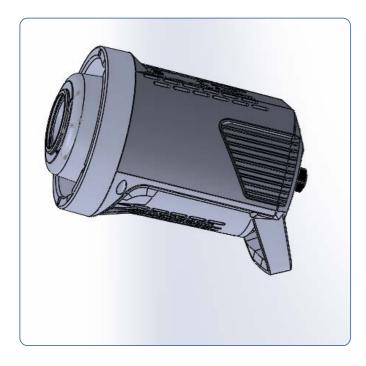


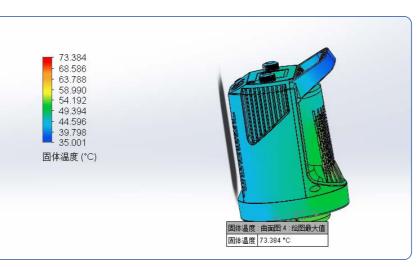

Simulation Results:

Simulation results show:

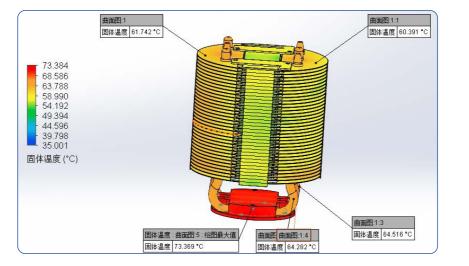

In a constant temperature 40°C environment The maximum temperature of the lamp board is 83.277°C Temperature rise 43.27°C

Thermal resistance value 0.432°C/W


🕀 LED - Handheld Fill light Bar



🛞 LED - Photography Light


Customer Requirements:

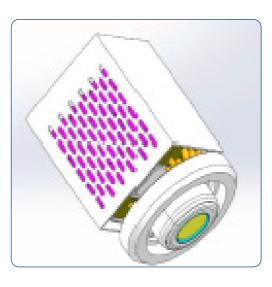
Diameter: 59.5mm Material: Substrate 1 Series Aluminum Substrate Thermal power consumption: 220W Ambient temperature: 35°C

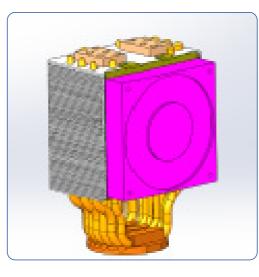
The hottest point of the whole equipment is the center point of the lamp board, the highest temperature 73.384°C.

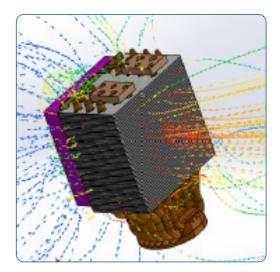
Customer Requirements:

The simulation results show that

Under the environment of Huan temperature: 35°C The maximum temperature of the lamp board is:

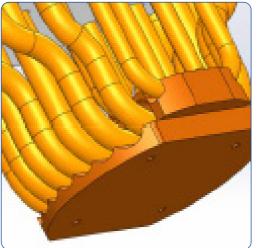

73.384°C

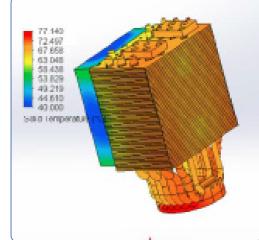

Temperature rise: 38.374°C Thermal resistance value: 0.174°C/W

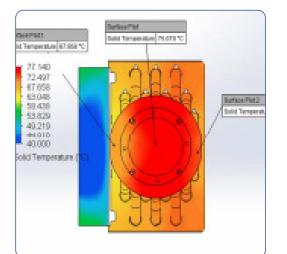

🕀 LED - Photography Light

Program Information:

- Thermal power consumption: 600W
- Ambient temperature: 35°C
- Required lamp board temperature below 75°C
- Air volume: 72cfm
- Wind pressure: 28.5pa
- Thermal resistance: <0.07°C/w




Simulation Results:


Simulation results show:

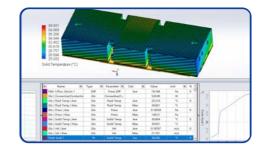
In a constant temperature 35°C environment The maximum temperature of the lamp board is 77.14°C Temperature rise 42.14°C

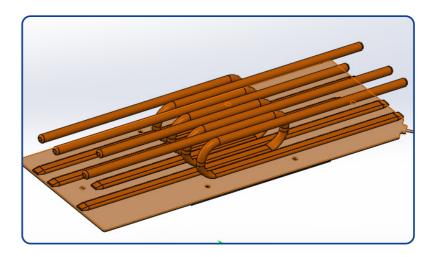
Thermal resistance value $0.08^{\circ}C/W$

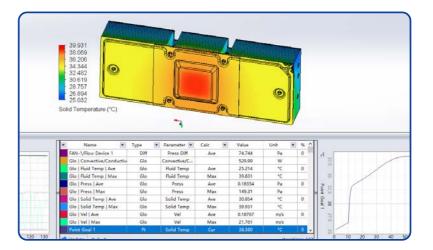
Customer Requirements:

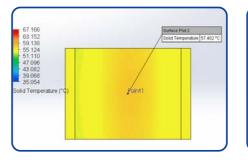
Power: 530W flow: 150cfm R<0.3°C/W

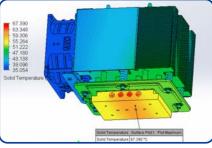
Design Option 1:


VC+8pcs ϕ 8 heat pipes


Simulation Results:


Simulation of the center temperature of the upper surface of the heating block is 38.58 degrees thermal resistance of $0.0256 \ ^{\circ}C \ / W$, to meet customer requirements

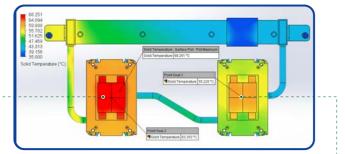


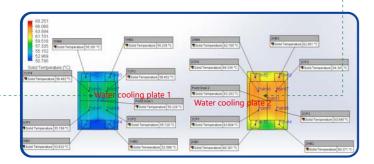

Program Information:

Heat sink with 8038 fan and simulation of the heat block simulation results, Ambient temperature:35 °C, power:500w

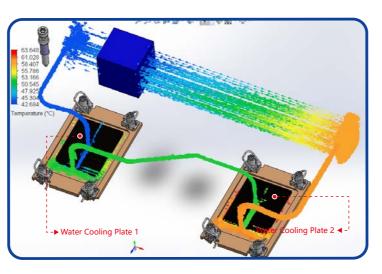
	Heat Sink Description and Simulation Results							
Radiator (Radiator Optimized Structural Parameters mm			Fan Work Point Units Consistent With The PQ Curve				
HS Height	Fin Pitch	Fin Thickness	Tc(°C)	Airflow cfm	Wind Pressure Inh20			
105.9	1.2	0.3	57.40	111.4	0.993			

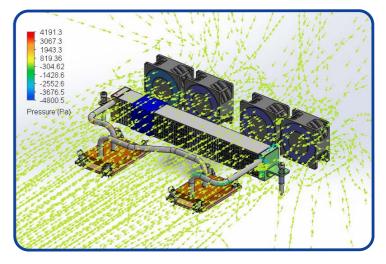
	Heatsink Vendor		TUNG YU ELECTRONIC CO., LTD.						
			Clip Force (lbf)						
	CI	PU	500W						
							rboard		
3. Test condition			Test environment Ambient Temp (°C)		open system				
					T4				
				Ambient Humidity (RH)		50%			
			flow(cfm)						
			Heatsink grease		N N				
Test Result									
Bem	flow (cfm)	∆P (mm-Aq)	T2(±)	T4(°C)	0T2 (で)	Power _(w)	Rca _(%/w)		
1			46.7	23.5	23.2	\$00,000	0.0464		
2			47.4	22.2	25.2	500.000	0.0504		
3			45.6	22.8	22.8	500.000	0.0456		
4			46.3	23.4	22.9	500.000	0.0458		
5			45.4	22.8	22.6	500.000	0.0452		
6			47.1	22.8	24.3	500.000	0.0486		
7			47.4	23.1	24.2	500.000	0.0464		
8			47.2	22.4	24.8	\$00.000	0.0495		
9			46.9	22.6	24.3	500.000	0.0486		
10			45.2	22.8	22.4	500.000	0.0448		

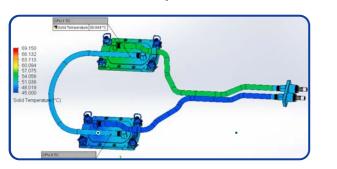


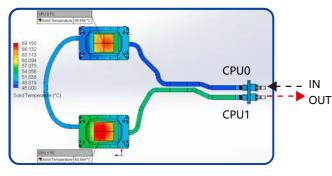


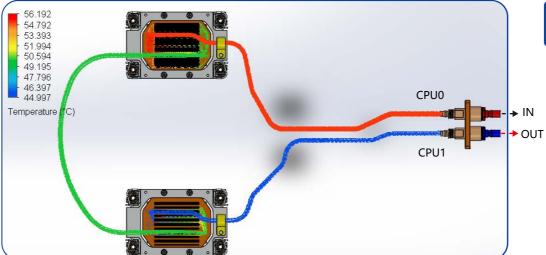
Flow: 0.693L/min


Ambient temperature: 35℃ Power: 350w


Temperature cloud of the water cooling board and the corresponding chip, the highest temperature of the chip is 68.2 degrees.


Temperature cloud of the water cooling board and the corresponding chip, Tc CPU1 is 55.22 degrees


							_
IN OUT R	Diff	Fluid Temp	Ave	-7.8501	°C	 Image: A set of the set of the	
IN OUT L	Diff	Fluid Temp	Ave	-8.2362	°C	~	
IN OUT LP	Diff	Fluid Temp	Ave	-15.904	°C	~	
IN OUT R	Diff	Press Diff	Ave	1698.2	Pa	~	
IN OUT LP	Diff	Press Diff	Ave	5012.4	Pa	~	
IN OUT L	Diff	Press Diff	Ave	1698.3	Pa	~	ľ
PUMP IN OUT	Diff	Press Diff	Ave	-8719.6	Pa	~	
FAN-HGD1-JY-1/Flow Devic	Diff	Press Diff	Ave	-172.57	Pa	~	
FAN-HGD1-JY-1/Flow Devic	Diff	Press Diff	Ave	-140.45	Pa	~	
FAN-HGD1-JY-1/Flow Devic	Diff	Press Diff	Ave	-62.142	Pa	~	
CANLING A MARKED A	D10	0 0'''		04 540	-		~


Flow1L/min

Temperature cloud of the water cooling board and the corresponding chip, the highest temperature of the chip is 69.15 degrees.

The temperature cloud of the water cooling board and the corresponding chip is 58.95 degrees for Tc CPU0 and 60.84 degrees for Tc CPU1.

Simulation Results:

Total water temperature difference: 10.05℃

- Temperature difference between water
- JT cooling Plate 0 and water inlet/outlet: 5.068°C

Temperature difference between water cooling Plate 1 and inlet/outlet water: 5.052°C

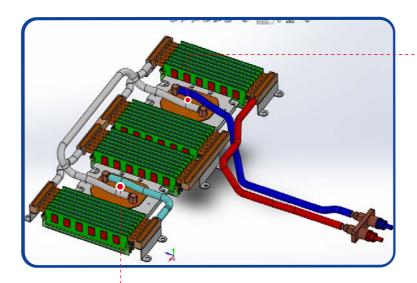
Total pressure drop: 9.52KPa (excluding pressure loss of quick coupling)

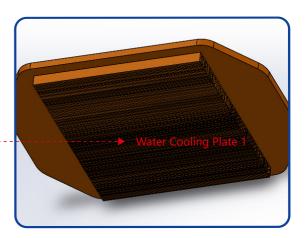
Pressure drop of water cooling plate 0

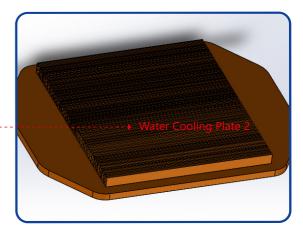
inlet and Outlet water: 2.47KPa

Pressure drop of water cooling plate 1 inlet and Outlet water: 5.78KPa

-	Name	Туре 🔻	Para 🔻	Calc 💌	Value	Unit 💌	%	^
	IN OUT	Diff	Fluid Te	Ave	10.057	°C	~	
	CPU 0 IN OUT	Diff	Fluid Te	Ave	5.0686	°C	~	
	CPU 1 IN OUT	Diff	Fluid Te	Ave	-5.0529	°C	~	
	CPU 1 IN OUT	Diff	Press Diff	Ave	5780.9	Pa	~	
	IN OUT	Diff	Press Diff	Ave	-9520.0	Pa	~	
	CPU 0 IN OUT	Diff	Press Diff	Ave	-2470.9	Pa	~	

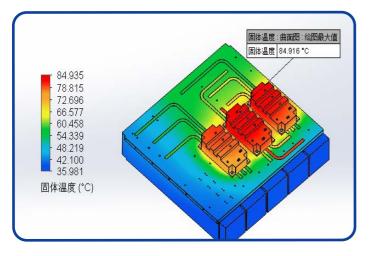

Project Information:

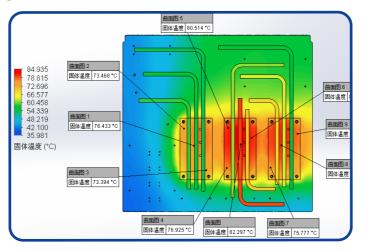

Power: 280W

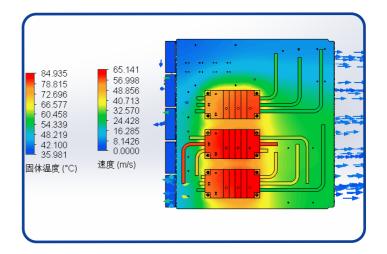

Ambient temperature: 35 degrees individual memory stick power: 8W liquid pure water, into the liquid water temperature: 50 degrees Tc less than 60: degrees. tcpu1-tcpu0 <3 degrees.

Product Information:

Water-cooled plate heat exchanger fin: material pure copper Thickness of water-cooled plate heat exchanger fin 0.15mm Gap 0.15mm Height 3mm Tooth length 47.56mm Total number of chips 178 (Simulation model ignores chip thermal resistance Rjc)

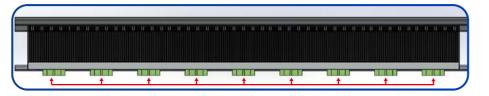


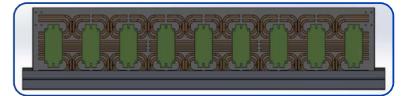




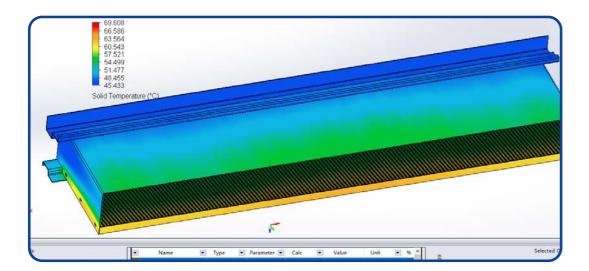
IGBT and the corresponding chip temperature cloud diagram, the maximum temperature of the chip is 83.916 degrees,

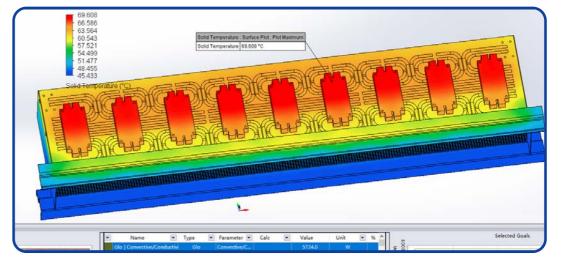
can meet the requirements of less than 90 degrees




Project Information:

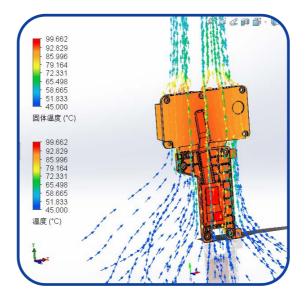
Fin change to 0.8*1.6mm total 499 pcs


Place Φ 8 heatpipe ,total 45 pcs power of 9 pcs IGBT are 636w each Ambient temperature: 45 degrees, IGBT TC < 30 degrees

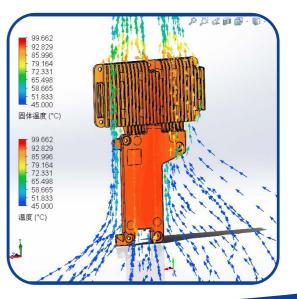


All IGBT heat source surfaces are located on this surface

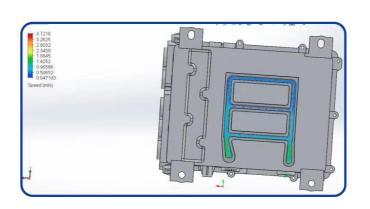
Because of the spade tooth design, the radiator material is set to AL1060, not AL6061, and the rest of the material is the same as the model. Add 0.1mm thickness thermal paste between IGBT and heat sink, thermal conductivity 5.2W/mk

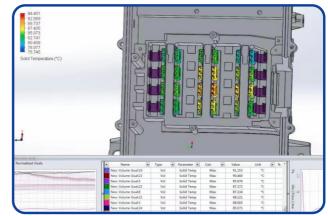

Temperature cloud of water cooling plate and chip, Highest temperature of the chip is about 69.6 degrees, TC is 24.6 degrees can meet the requirements of TC less than 30 degrees.

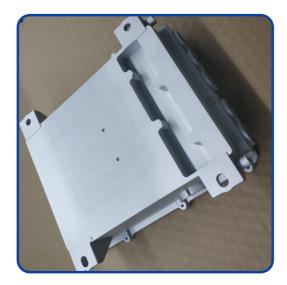

Design Points (Design Solution for 1 Heat Pipe):


Die-cast aluminum base plate (ENAC44300) + intermediate copper base plate (C1100) + heat pipe (Φ 6)

The center control radiator has high requirements for functionality and stability, the radiator has four types of a total of six conductive foam and the materials used need to be able to salt spray resistance is high.




Customer Requirements:


Ambient temperature: 60 °C Power: 360W need to reduce to: 90 °C

Design Program:

Die casting +CNC+ friction stir welding channel

3 Netcom / Consumer Electronics / LED



😚 PC / Server

THANKS!

Tel: +86-769-26626558

Web: www.tongyucooler.com

Email: info@tongyu-group.com

Add: No. 5, Chuangye Road, Dongkeng Village, Dongkeng Town,

Dongguan City, Guangdong Province, 523800, China.

GLOBAL THERMAL SOLUTIONS PROVIDER AND SUPPLIER