

Approval number :

Effective date of approval :

Customer :

 Product :
 HK-35@18-XX-D4. 5-01-1g-1

 Material Code :
 1.01.7935_PC、1.01.7936_PC、1.01.7937_PC

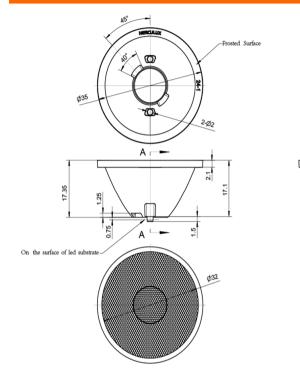
PN: HK-35@18-XX-D4. 5-01-1g-1

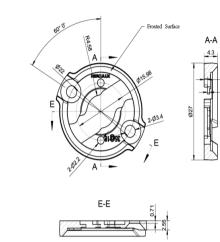
Manufacturer : Chengdu HercuLux Photoelectric Technology Co.,Ltd

	Supplier co	onfirmation	Client confirmation				
Proposed		DATE	Qualified□				
Project manager		DATE	Unqualified□		DATE		
Audit		DATE	Audit		DATE		
Approved		DATE	Approved		DATE		
Stamp		DATE	Stamp		DATE		

(Confirmation of acceptance by both parties must be signed and sealed)

Factory: Chengdu Shuangliu District, Iot industrial park 2 road HercuLux Photoelectric ParkPhone : 028-85887727 (801)028-85887990 (801)Fax : 028-85887730http://www.herculux.cn/Sales Dept: Shenzhen Nanshan District Nanshan Cloud Valley Innovation Industrial Park Comprehensive Service Building,TEL: 0755-2937 1541FAX: 0755-2907 5140


*Approval In duplicate, for both supplier and customer.



TEL: 0755-2937 1541	FAX: 0755-2907 5140	http://www.herculux.cn/	Date updated: 2020/12/14
Product Picture)
PN	:	<u>HK-35@18-XX-D4.5-01-1</u>	<u>g-1</u>
Size(L*W*H/Φ*H)		<u>Φ35mm:H18mm</u>	
Material		PC	
Effiency:		>80%	
Temperature(Topr)		/	
FWHM		15°24°36°	
Matched LES	: CREE	1304、LUMINUS CXM-6、CI	ITIZEN OBO

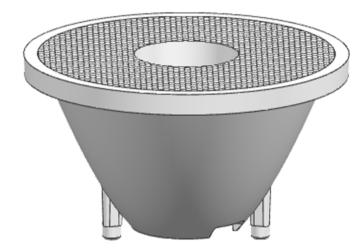
Product 2D drawings

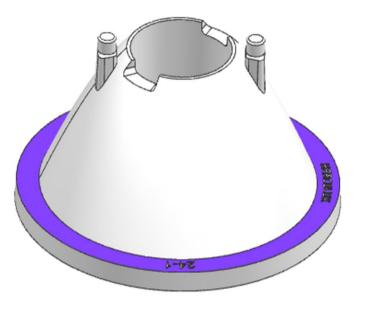
A-A

Ø11

15.98

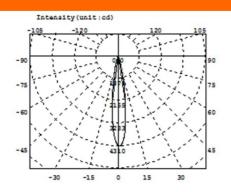
0.75


Technical Requirement:


- 1. The surface don't have any defects of flash, shrink and bubble.
- 2. The uncharted fillet and pattern draft subject to the 3D drawing
- 3. The uncharted dimensional tolerance subject to the 3D drawing.

	Optical Design			HK-35@18-XX-D4.5- 01-1g-1		1. 01. 7935_PC
	Structure Design			Pages	Qty	Weight
ing.	Assess			2		
	Authorized		Material:PC		CDHK	

Image illustration



IES—CREE 1304 15°

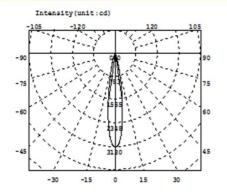
		ansit						θ.	v (5	06)-	16.9	9
4310				1		A	-			1	ł	
3233												-
2155												-
1078					1			-				-
0.0	0 - 75	-60	-45	-30	-15		1	-	45	-	75	

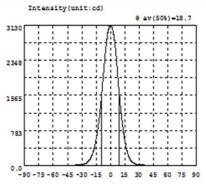
Intensity (unit:cd)

Intensity data: (deg , cd) CO-180

λ	I	λ	I	λ	I	λ	I	A	I	λ	I
-90.0	0.1015	-58.5	8.108	-27.0	38.89	4.5	3848	36.0	19.28	67.5	4.090
-88.5	0.0788	-57.0	8.858	-25.5	49.73	6.0	3389	37.5	17.78	69.0	3.533
-87.0	0.1243	-55.5	9.476	-24.0	67.40	7.5	2840	39.0	16.78	70.5	3.049
-85.5	0.2387	-54.0	10.20	-22.5	98.48	9.0	2255	40.5	16.16	72.0	2.694
-84.0	0.4987	-52.5	10.94	-21.0	143.1	10.5	1755	42.0	15.69	73.5	2.330
-82.5	0.7224	-51.0	11.45	-19.5	196.9	12.0	1324	43.5	15.20	75.0	1.951
-81.0	0.8978	-49.5	11.82	-18.0	268.2	13.5	966.9	45.0	14.66	76.5	1.626
-79.5	1.112	-48.0	12.18	-16.5	375.5	15.0	687.2	46.5	14.24	78.0	1.405
-78.0	1.378	-46.5	12.34	-15.0	531.6	16.5	495.4	48.0	13.82	79.5	1.247
-76.5	1.582	-45.0	12.63	-13.5	724.4	18.0	351.2	49.5	13.30	81.0	1.010
-75.0	1.841	-43.5	13.08	-12.0	975.3	19.5	239.0	51.0	12.66	82.5	0.8409
-73.5	2.162	-42.0	13.57	-10.5	1312	21.0	170.4	52.5	11.91	84.0	0.5840
-72.0	2.507	-40.5	14.15	-9.0	1744	22.5	123.3	54.0	11.04	85.5	0.4368
-70.5	2.967	-39.0	14.88	-7.5	2214	24.0	88.86	55.5	10.12	87.0	0.1956
- 69.0	3.474	-37.5	15.73	-6.0	2743	25.5	63.87	57.0	9.191	88.5	0.1039
- 67.5	4.034	-36.0	16.89	-4.5	3300	27.0	47.77	58.5	8.427	90.0	0.1117
-66.0	4.611	-34.5	18.93	-3.0	3793	28.5	38.06	60.0	7.627		
- 64 . 5	5.329	-33.0	21.10	-1.5	4098	30.0	31.56	61.5	6.827		
-63.0	6.026	-31.5	23.70	0.0	4268	31.5	27.05	63.0	6.100		
-61.5	6.611	-30.0	27.24	1.5	4287	33.0	23.59	64.5	5.356		
- 60 . 0	7.352	-28.5	31.75	3.0	4139	34.5	21.22	66.0	4.665		

Electricity Parameter:


Current	I:	0.1000A	Power:	3.650W
Voltage	V:	36.50V	PF:	0.000


Optical Parameter (Distance=2.410m) :

Equivalent Luminous	flux: \$ eff= 522.91m	Efficiency: Eff=143.271m/W
Diffuse angle:	@ (25욱): 24.5deg @ (50욱):	16.9deg@(75%): 11.1deg@(50%): 16.9deg
Diffuse angle:	@(25%): 24.5deg@(50%):	17.0deg@(75%): 11.2deg@(50%): 17.0deg
Imax=4300cd (C=0.0d	leg,G=1.0deg)	C0-180Plane Imax= 4300cd(G=1.0deg)
		C0-180Plane IO= 4268cd

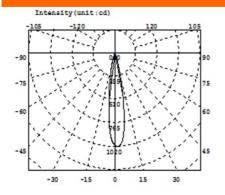
第5页

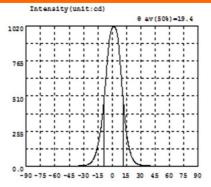
IES—LUMINUS CXM-6 15°

Intensity data: (deg , cd) CO-180

λ	I	A	I	A	I	λ	I	A	I	λ	I
-90.0	0.1128	-58.5	6.971	-27.0	44.65	4.5	2739	36.0	16.01	67.5	3.481
-88.5	0.1021	-57.0	7.734	-25.5	58.14	6.0	2426	37.5	14.71	69.0	3.070
-87.0	0.1695	-55.5	8.540	-24.0	79.99	7.5	2047	39.0	13.71	70.5	2.634
-85.5	0.3171	-54.0	9.313	-22.5	116.3	9.0	1660	40.5	12.94	72.0	2.258
-84.0	0.4758	-52.5	10.18	-21.0	170.0	10.5	1327	42.0	12.29	73.5	1.959
-82.5	0.6681	-51.0	10.95	-19.5	234.6	12.0	1031	43.5	11.87	75.0	1.683
-81.0	0.8147	-49.5	11.59	-18.0	322.7	13.5	775.8	45.0	11.53	76.5	1.426
-79.5	1.006	-48.0	11.96	-16.5	439.3	15.0	566.2	46.5	11.23	78.0	1.247
-78.0	1.142	-46.5	12.25	-15.0	593.4	16.5	413.8	48.0	11.00	79.5	1.091
-76.5	1.315	-45.0	12.60	-13.5	777.2	18.0	282.8	49.5	10.63	81.0	0.8605
-75.0	1.575	-43.5	12.79	-12.0	1005	19.5	194.0	51.0	10.19	82.5	0.6583
-73.5	1.880	-42.0	13.23	-10.5	1290	21.0	130.0	52.5	9.619	84.0	0.4937
-72.0	2.145	-40.5	13.75	-9.0	1634	22.5	90.23	54.0	8.932	85.5	0.2690
-70.5	2.527	-39.0	14.66	-7.5	1990	24.0	64.91	55.5	8.222	87.0	0.2143
- 69.0	2.948	-37.5	15.83	-6.0	2355	25.5	48.85	57.0	7.518	88.5	0.1015
- 67.5	3.370	-36.0	17.19	-4.5	2681	27.0	38.00	58.5	6.896	90.0	0.1444
-66.0	3.839	-34.5	18.96	-3.0	2929	28.5	30.95	60.0	6.316		
-64.5	4.397	-33.0	21.30	-1.5	3070	30.0	25.81	61.5	5.708		
-63.0	4.968	-31.5	24.27	0.0	3126	31.5	22.10	63.0	5.054		
-61.5	5.604	-30.0	28.64	1.5	3095	33.0	19.40	64.5	4.504		
- 60 . 0	6.299	-28.5	35.09	3.0	2963	34.5	17.52	66.0	3.962		

Electricity Parameter:


Current I:	0.1500A	Power:	3.350W
Voltage V:	33.50V	PF:	0.000


Optical Parameter (Distance=2.410m) :

Equivalent Luminous	s flux: 4 eff= 443.31m	Efficiency: Eff=132.33lm/W
Diffuse angle:	@(25%): 26.8deg@(50%):	18.7deg@(75%): 12.3deg@(50%): 18.7deg
Diffuse angle:	@(25%): 26.8deg@(50%):	18.7deg@(75%): 12.3deg@(50%): 18.7deg
Imax=3126cd (C=0.00	deg,G=0.0deg)	CO-180Plane Imax= 3126cd(G=0.0deg)
		C0-180Plane IO= 3126cd

IES—CITIZEN OBO 15°

31/2	HERCULUX
The	恒坤光电

Intensity data: (deg , cd) CO-180

λ	I	λ	I	λ	I	A	I	λ	I	λ	I
-90.0	0.0790	-58.5	2.131	-27.0	11.89	4.5	985.3	36.0	6.567	67.5	1.437
-88.5	0.1573	-57.0	2.334	-25.5	14.84	6.0	930.7	37.5	6.007	69.0	1.270
-87.0	0.1472	-55.5	2.545	-24.0	19.33	7.5	832.3	39.0	5.530	70.5	1.130
-85.5	0.1918	-54.0	2.794	-22.5	26.78	9.0	702.7	40.5	5.171	72.0	0.9716
-84.0	0.1712	-52.5	3.016	-21.0	39.05	10.5	574.5	42.0	4.952	73.5	0.8398
-82.5	0.2148	-51.0	3.169	-19.5	55.04	12.0	454.4	43.5	4.752	75.0	0.7278
-81.0	0.3507	-49.5	3.271	-18.0	77.51	13.5	336.6	45.0	4.598	76.5	0.6147
-79.5	0.4174	-48.0	3.368	-16.5	110.2	15.0	246.9	46.5	4.462	78.0	0.5337
-78.0	0.4181	-46.5	3.430	-15.0	154.7	16.5	182.7	48.0	4.315	79.5	0.4834
-76.5	0.4776	-45.0	3.523	-13.5	203.5	18.0	131.2	49.5	4.081	81.0	0.3416
-75.0	0.6343	-43.5	3.628	-12.0	263.5	19.5	91.69	51.0	3.892	82.5	0.3189
-73.5	0.7013	-42.0	3.778	-10.5	344.0	21.0	63.64	52.5	3.706	84.0	0.2256
-72.0	0.7957	-40.5	3.970	-9.0	446.0	22.5	45.40	54.0	3.496	85.5	0.1606
-70.5	0.8516	-39.0	4.264	-7.5	556.8	24.0	32.12	55.5	3.174	87.0	0.0853
- 69.0	1.043	-37.5	4.624	-6.0	681.1	25.5	23.05	57.0	2.884	88.5	0.1128
-67.5	1.189	-36.0	5.029	-4.5	805.6	27.0	17.19	58.5	2.609	90.0	0.0033
-66.0	1.247	-34.5	5.536	-3.0	909.8	28.5	13.56	60.0	2.380		
-64.5	1.405	-33.0	6.273	-1.5	969.4	30.0	11.11	61.5	2.148		
-63.0	1.577	-31.5	7.160	0.0	1001	31.5	9.364	63.0	1.922		
-61.5	1.791	-30.0	8.222	1.5	1016	33.0	8.081	64.5	1.778		
- 60 . 0	1.916	-28.5	9.767	3.0	1010	34.5	7.294	66.0	1.582		

Electricity Parameter:

Current I:	0.1500A	Power:	0.8390W
Voltage V:	8.399V	PF:	0.000

Optical Parameter (Distance=2.410m) :

Equivalent Luminous	s flux: 4 eff= 152.21m	Efficiency: Eff=181.50lm/W
Diffuse angle:	@(25%): 27.0deg@(50%):	19.4deg @(75%): 13.3deg @(50%): 19.4deg
Diffuse angle:	@(25%): 27.1deg@(50%):	19.6deg @(75%): 13.5deg @(50%): 19.6deg
Imax=1016cd (C=0.00	leg,G=2.0deg)	C0-180Plane Imax= 1016cd(G=2.0deg)
		C0-180Plane IO= 1001cd

IES—CREE	E 1304		24°										HEF ^{@#}
Inte	ensity (un	it:cd)				Int	ensity (un	it:cd)					
-105	-120		120	10	5				e av	(50%)=24.3	8		
1	· · · · · · · · · · · · · · · · · · ·	- ST	1.12	1000		2870		: : A	1 1 1		7		
	1	-7	1000	· .				::-#:			-		
- 90	1 1.4	- 99	A-1.	-	90		1 1	1 1/1					
1	4	1.11	Sal	·	4	2153	1 1		1		-1		
- 75	1.10	1 10	1.10	1	75						-		
1.	1.1	7.1.	1.20%	1-1			11	1 II I	10 1 1				
- 1°.		1485	1 1	· / ·		1435	111				-1		
-60	×	·	1	1	60			·	·		-		
1.1	1.1	2153	15 3	1 .	1		1 1	: 1 :					
1 A.	/~	-4. V		1		718			11		-1		
- 45	14	2870	1	2	45			i- <i>f</i> i}-i-			-		
1.	1	1		1.1	1								
	-30 -1	15 0	15	30	_	0.0	5 - 60 -45 -	30 -15 0	15 30 4	5 60 75	90		
Intens:	ity dat	ta: (deg	, cd)	C0-1	30								
												1	
A - 90 , 0	0.0509	A -58.5	9.020	A -27.0	79.48	λ 4.5	2644	A 36.0	45.09	A 67.5	4.711		
- 88.5	0.0643	-57.0	10.25	-27.0	92.22	6.0	2522	37.5	39.23	69.0	4.034		
-87.0	0.2808	-57.0	11.48	-23.5	112.2	7.5	2359	39.0	34.58	70.5	3.448	1	
-85.5	0.4203	-54.0	12.70	-22.5	147.5	9.0	2133	40.5	31.23	72.0	3.059	1	
-84.0	0.6872	-52.5	14.03	-21.0	206.5	10.5	1871	42.0	28.53	73.5	2.735		
-82.5	0.8682	-51.0	15.39	-19.5	292.0	12.0	1568	43.5	26.27	75.0	2.389		
-81.0	1.161	-49.5	16.77	-18.0	423.4	13.5	1255	45.0	24.35	76.5	2.108	1	
-79.5	1.364	-48.0	18.08	-16.5	607.6	15.0	963.1	46.5	22.56	78.0	1.888	1	
-78.0	1.633	-46.5	19.39	-15.0	843.6	16.5	732.2	48.0	20.82	79.5	1.525	1	
-76.5	2.013	-45.0	20.88	-13.5	1104	18.0	543.0	49.5	19.13	81.0	1.273	1	

 -76.5
 2.031
 -45.0
 20.82
 79.5
 1.325

 -76.5
 2.031
 -45.0
 20.86
 -13.5
 1.645
 1.6
 543.0
 49.5
 19.13
 61.0
 1.325

 -75.5
 2.031
 -45.0
 20.86
 -13.5
 1104
 18.0
 543.0
 49.5
 19.13
 61.0
 1.273

 -75.5
 2.031
 -45.0
 2.038
 -13.5
 1104
 18.0
 543.0
 49.5
 19.13
 61.0
 1.273

 -73.5
 2.255
 42.0
 2.394
 -10.5
 1689
 21.0
 271.0
 2.351
 48.0
 0.7442

 -70.5
 3.231
 -39.0
 2.76
 -7.5
 2.03
 24.0
 160.5
 55.5
 12.8
 87.0
 0.3500

 -70.5
 3.231
 -39.0
 2.76
 -7.5
 2.03
 24.0
 160.5
 55.5
 12.8
 87.0
 0.3500

 -70.5
 3.231
 -39.0
 8.76
 -31.8
 -5.0
 2.288
 10.0
 0.0050
 -66.0
 4.647
 -34.5
 1.68
 -3.0
 2.6

		,		
Current	I:	0.1000A	Power:	3.640W
Voltage	V:	36.40V	PF:	0.000

Optical Parameter (Distance=2.559m) :

 Equivalent luminous flux: \$ eff= 601.61m
 Efficiency: Eff=165.291m/W

 Diffuse angle:
 0(25%): 32.3deg@(50%): 24.3deg@(75%): 16.8deg@(50%): 24.3deg

 Diffuse angle:
 0(25%): 32.4deg@(50%): 24.3deg@(75%): 16.8deg@(50%): 24.3deg

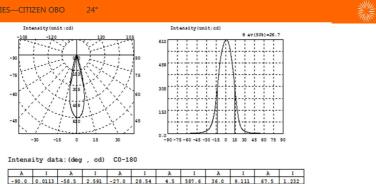
 Imax=2862cd (C=0.0deg,C=0.5deg)
 C0-180Plane Imax= 2862cd(C=0.5deg)

 C0-180Plane Imax= 2852cd
 C0-180Plane Imax= 2852cd

Inte	anaity (un	it:cd)				Inte	ansity (un	Lt:cd)			
-105	-120		120	10	5				e av	50%) -26.6	5
	the state	- T- C-	1.1	1-1-1-1	1	1850		: : A			7
	1	-1	1-1-1					· / · / ·	+		-
0))	- 98	A-not	1	90			111	11.1.1		
lun-	1-10	- AL	S. S.	·	1	1388	1 1	111	1		-1
5	1400	/ / 63	1.16	1 1	75						-
1.	· . /	Y.J.L.	1.4.	1-1		1.1		l l.	1.1.1		
a 11.	~	925	1 1	1. 1	60	925	11			11	-1
~[]	×	·	2	1				; ∦ ;-	·-h;;		-
1.1	1	/ 9388	15 3	1 .1	1				1 : :		
14.	. /**-	V	[1. 1.		463	1 1		11	111	-1
5	34	, 1850	1	X	45			-/			-
1.	1	A		1.1	1						
	-30 -1	15 0	15	30		0.0	-60 -45 -	10 -15 0	15 30 4	5 60 75	90
tens:	ity dat	ta: (deg	, cd)	C0-1	80						
λ	I	λ	I	A	I	λ	I	λ	I	λ	I
90.0	0.1015	-58.5	7.747	-27.0	67.17	4.5	1789	36.0	28.87	67.5	4.493
88.5	0.1129		8.554	-25.5	82.25	6.0	1726	37.5	25.50	69.0	3.971
87.0	0.1923	-55.5	9.355	-24.0	103.7	7.5	1636	39.0	22.91	70.5	3.561
85.5	0.2943		10.25	-22.5	135.4	9.0	1521	40.5	20.98	72.0	3.193
84.0	0.4666		11.18	-21.0	179.5	10.5	1393	42.0	19.45	73.5	2.863
82.5	0.8156		12.30	-19.5	234.6	12.0	1247	43.5	18.16	75.0	2.503
	1.097	-49.5	13.38	-18.0	313.2	13.5	1081	45.0	17.01	76.5	2.150
81.0											
81.0	1.345	-49.5	14.48	-16.5	422.9	15.0	895.7	46.5	16.01	78.0	1.832
79.5							895.7 722.6	46.5			
	1.345	-48.0	14.48	-16.5	422.9	15.0			16.01	78.0	1.832
79.5 78.0 76.5	1.345 1.619 1.935 2.253	-48.0 -46.5	14.48 15.70 16.86 17.96	-16.5 -15.0 -13.5 -12.0	422.9 568.1 731.2 910.7	15.0 16.5	722.6	48.0	16.01 14.97 13.87 12.74	78.0 79.5	1.832 1.525 1.221 0.9906
79.5 78.0 76.5 75.0 73.5	1.345 1.619 1.935 2.253 2.579	-48.0 -46.5 -45.0 -43.5 -42.0	14.48 15.70 16.86 17.96 19.11	-16.5 -15.0 -13.5 -12.0 -10.5	422.9 568.1 731.2 910.7 1097	15.0 16.5 18.0 19.5 21.0	722.6 560.0 412.6 278.4	48.0 49.5 51.0 52.5	16.01 14.97 13.87 12.74 11.75	78.0 79.5 81.0 82.5 84.0	1.832 1.525 1.221 0.9906 0.7251
79.5 78.0 76.5 75.0 73.5 72.0	1.345 1.619 1.935 2.253 2.579 2.884	-48.0 -46.5 -45.0 -43.5 -42.0 -40.5	14.48 15.70 16.86 17.96 19.11 20.41	-16.5 -15.0 -13.5 -12.0 -10.5 -9.0	422.9 568.1 731.2 910.7 1097 1273	15.0 16.5 18.0 19.5 21.0 22.5	722.6 560.0 412.6 278.4 197.8	48.0 49.5 51.0 52.5 54.0	16.01 14.97 13.87 12.74 11.75 10.84	78.0 79.5 81.0 82.5 84.0 85.5	1.832 1.525 1.221 0.9906 0.7251 0.4580
79.5 78.0 76.5 75.0 73.5 72.0 70.5	1.345 1.619 1.935 2.253 2.579 2.884 3.204	-48.0 -46.5 -45.0 -43.5 -42.0 -40.5 -39.0	14.48 15.70 16.86 17.96 19.11 20.41 21.90	-16.5 -15.0 -13.5 -12.0 -10.5 -9.0 -7.5	422.9 568.1 731.2 910.7 1097 1273 1416	15.0 16.5 18.0 19.5 21.0 22.5 24.0	722.6 560.0 412.6 278.4 197.8 140.4	48.0 49.5 51.0 52.5 54.0 55.5	16.01 14.97 13.87 12.74 11.75 10.84 9.913	78.0 79.5 81.0 82.5 84.0 85.5 87.0	1.832 1.525 1.221 0.9906 0.7251 0.4580 0.2896
79.5 78.0 76.5 75.0 73.5 72.0 70.5 69.0	1.345 1.619 1.935 2.253 2.579 2.884 3.204 3.568	-48.0 -46.5 -45.0 -43.5 -42.0 -40.5 -39.0 -37.5	14.48 15.70 16.86 17.96 19.11 20.41 21.90 23.68	-16.5 -15.0 -13.5 -12.0 -10.5 -9.0 -7.5 -6.0	422.9 568.1 731.2 910.7 1097 1273 1416 1540	15.0 16.5 18.0 19.5 21.0 22.5 24.0 25.5	722.6 560.0 412.6 278.4 197.8 140.4 102.3	48.0 49.5 51.0 52.5 54.0 55.5 57.0	16.01 14.97 13.87 12.74 11.75 10.84 9.913 9.030	78.0 79.5 81.0 82.5 84.0 85.5 87.0 88.5	1.832 1.525 1.221 0.9906 0.7251 0.4580 0.2896 0.1425
79.5 78.0 76.5 75.0 73.5 72.0 70.5 69.0 67.5	1.345 1.619 1.935 2.253 2.579 2.884 3.204 3.568 4.008	-48.0 -46.5 -45.0 -43.5 -42.0 -40.5 -39.0 -37.5 -36.0	14.48 15.70 16.86 17.96 19.11 20.41 21.90 23.68 25.99	-16.5 -15.0 -13.5 -12.0 -10.5 -9.0 -7.5 -6.0 -4.5	422.9 568.1 731.2 910.7 1097 1273 1416 1540 1646	15.0 16.5 18.0 19.5 21.0 22.5 24.0 25.5 27.0	722.6 560.0 412.6 278.4 197.8 140.4 102.3 77.98	48.0 49.5 51.0 52.5 54.0 55.5 57.0 58.5	16.01 14.97 13.87 12.74 11.75 10.84 9.913 9.030 8.258	78.0 79.5 81.0 82.5 84.0 85.5 87.0	1.832 1.525 1.221 0.9906 0.7251 0.4580 0.2896
79.5 78.0 76.5 75.0 73.5 72.0 70.5 59.0 57.5 56.0	1.345 1.619 1.935 2.253 2.579 2.884 3.204 3.568 4.008 4.500	-48.0 -46.5 -45.0 -43.5 -42.0 -40.5 -39.0 -37.5 -36.0 -34.5	14.46 15.70 16.86 17.96 19.11 20.41 21.90 23.68 25.99 29.29	-16.5 -15.0 -13.5 -12.0 -10.5 -9.0 -7.5 -6.0 -4.5 -3.0	422.9 568.1 731.2 910.7 1097 1273 1416 1540 1646 1733	15.0 16.5 18.0 19.5 21.0 22.5 24.0 25.5 27.0 28.5	722.6 560.0 412.6 278.4 197.8 140.4 102.3 77.98 62.97	48.0 49.5 51.0 52.5 54.0 55.5 57.0 58.5 60.0	16.01 14.97 13.87 12.74 11.75 10.84 9.913 9.030 8.258 7.529	78.0 79.5 81.0 82.5 84.0 85.5 87.0 88.5	1.832 1.525 1.221 0.9906 0.7251 0.4580 0.2896 0.1425
79.5 78.0 76.5 75.0 73.5 72.0 70.5 69.0 67.5 66.0 64.5	1.345 1.619 1.935 2.253 2.579 2.884 3.204 3.568 4.008 4.500 5.058	-48.0 -46.5 -45.0 -43.5 -42.0 -40.5 -39.0 -37.5 -36.0 -34.5 -33.0	14.46 15.70 16.86 17.96 19.11 20.41 21.90 23.68 25.99 29.29 33.77	-16.5 -15.0 -13.5 -12.0 -10.5 -9.0 -7.5 -6.0 -4.5 -3.0 -1.5	422.9 568.1 731.2 910.7 1273 1416 1540 1646 1733 1793	15.0 16.5 18.0 19.5 21.0 22.5 24.0 25.5 27.0 28.5 30.0	722.6 560.0 412.6 278.4 197.8 140.4 102.3 77.98 62.97 52.36	48.0 49.5 51.0 52.5 54.0 55.5 57.0 58.5 60.0 61.5	16.01 14.97 13.87 12.74 11.75 10.84 9.913 9.030 8.258 7.529 6.850	78.0 79.5 81.0 82.5 84.0 85.5 87.0 88.5	1.832 1.525 1.221 0.9906 0.7251 0.4580 0.2896 0.1425
79.5 78.0 76.5 75.0 73.5 72.0 70.5 69.0 67.5 66.0 64.5 63.0	1.345 1.619 1.935 2.253 2.579 2.884 3.204 3.568 4.008 4.500 5.058 5.712	-48.0 -46.5 -45.0 -43.5 -42.0 -40.5 -39.0 -37.5 -36.0 -34.5 -33.0 -31.5	14.46 15.70 16.86 19.11 20.41 21.90 23.68 25.99 29.29 33.77 39.16	-16.5 -15.0 -13.5 -12.0 -10.5 -9.0 -7.5 -6.0 -4.5 -3.0 -1.5 0.0	422.9 568.1 731.2 910.7 1273 1416 1540 1646 1733 1793 1830	15.0 16.5 18.0 19.5 21.0 22.5 24.0 25.5 27.0 28.5 30.0 31.5	722.6 560.0 412.6 278.4 197.8 140.4 102.3 77.98 62.97 52.36 44.18	48.0 49.5 51.0 52.5 54.0 55.5 57.0 58.5 60.0 61.5 63.0	16.01 14.97 13.87 12.74 11.75 10.84 9.913 9.030 8.258 7.529 6.850 6.175	78.0 79.5 81.0 82.5 84.0 85.5 87.0 88.5	1.832 1.525 1.221 0.9906 0.7251 0.4580 0.2896 0.1425
79.5 78.0 76.5 75.0 73.5 72.0 70.5 69.0 67.5 66.0 64.5 63.0 61.5	1.345 1.619 1.935 2.253 2.579 2.884 3.204 3.568 4.008 4.500 5.058 5.712 6.336	-48.0 -46.5 -45.0 -43.5 -42.0 -40.5 -39.0 -37.5 -36.0 -34.5 -33.0 -31.5 -30.0	14.48 15.70 16.86 17.96 19.11 20.41 21.90 23.68 25.99 29.29 33.77 39.16 46.22	-16.5 -15.0 -13.5 -12.0 -10.5 -9.0 -7.5 -6.0 -4.5 -3.0 -1.5 0.0 1.5	422.9 568.1 731.2 910.7 1097 1273 1416 1540 1646 1733 1793 1830 1842	15.0 16.5 18.0 19.5 21.0 22.5 24.0 25.5 27.0 28.5 30.0 31.5 33.0	722.6 560.0 412.6 278.4 197.8 140.4 102.3 77.98 62.97 52.36 44.18 37.74	48.0 49.5 51.0 52.5 54.0 55.5 57.0 58.5 60.0 61.5 63.0 64.5	16.01 14.97 13.87 12.74 11.75 10.84 9.913 9.030 8.258 7.529 6.850 6.175 5.593	78.0 79.5 81.0 82.5 84.0 85.5 87.0 88.5	1.832 1.525 1.221 0.9906 0.7251 0.4580 0.2896 0.1425
79.5 78.0 76.5 75.0 73.5 72.0 70.5 69.0 67.5 66.0 64.5	1.345 1.619 1.935 2.253 2.579 2.884 3.204 3.568 4.008 4.500 5.058 5.712	-48.0 -46.5 -45.0 -43.5 -42.0 -40.5 -39.0 -37.5 -36.0 -34.5 -33.0 -31.5	14.46 15.70 16.86 19.11 20.41 21.90 23.68 25.99 29.29 33.77 39.16	-16.5 -15.0 -13.5 -12.0 -10.5 -9.0 -7.5 -6.0 -4.5 -3.0 -1.5 0.0	422.9 568.1 731.2 910.7 1273 1416 1540 1646 1733 1793 1830	15.0 16.5 18.0 19.5 21.0 22.5 24.0 25.5 27.0 28.5 30.0 31.5	722.6 560.0 412.6 278.4 197.8 140.4 102.3 77.98 62.97 52.36 44.18	48.0 49.5 51.0 52.5 54.0 55.5 57.0 58.5 60.0 61.5 63.0	16.01 14.97 13.87 12.74 11.75 10.84 9.913 9.030 8.258 7.529 6.850 6.175	78.0 79.5 81.0 82.5 84.0 85.5 87.0 88.5	1.832 1.525 1.221 0.9906 0.7251 0.4580 0.2896 0.1425
79.5 78.0 76.5 75.0 73.5 72.0 70.5 69.0 67.5 66.0 64.5 63.0 61.5 60.0	1.345 1.619 1.935 2.253 2.579 2.884 3.204 3.568 4.008 4.500 5.058 5.712 6.336 7.016	-48.0 -46.5 -45.0 -43.5 -42.0 -40.5 -39.0 -37.5 -36.0 -34.5 -33.0 -31.5 -30.0 -28.5	14.48 15.70 16.86 17.96 19.11 20.41 23.68 25.99 29.29 33.77 39.16 46.22 55.21	-16.5 -15.0 -13.5 -12.0 -10.5 -9.0 -7.5 -6.0 -4.5 -3.0 -1.5 0.0 1.5 3.0	422.9 568.1 731.2 910.7 1273 1416 1540 1646 1733 1793 1830 1842	15.0 16.5 18.0 19.5 21.0 22.5 24.0 25.5 27.0 28.5 30.0 31.5 33.0	722.6 560.0 412.6 278.4 197.8 140.4 102.3 77.98 62.97 52.36 44.18 37.74	48.0 49.5 51.0 52.5 54.0 55.5 57.0 58.5 60.0 61.5 63.0 64.5	16.01 14.97 13.87 12.74 11.75 10.84 9.913 9.030 8.258 7.529 6.850 6.175 5.593	78.0 79.5 81.0 82.5 84.0 85.5 87.0 88.5	1.832 1.525 1.221 0.9906 0.7251 0.4580 0.2896 0.1425
79.5 78.0 76.5 75.0 73.5 72.0 70.5 69.0 67.5 66.0 64.5 63.0 61.5 60.0 lect	1.345 1.619 1.935 2.253 2.579 2.884 3.204 3.568 4.008 4.008 4.008 5.058 5.712 6.336 7.016 ricit	-40.0 -46.5 -45.0 -43.5 -42.0 -39.0 -37.5 -36.0 -37.5 -36.0 -34.5 -33.0 -31.5 -30.0 -28.5	14.48 15.70 16.66 19.11 20.41 21.90 23.68 25.99 29.29 33.77 39.16 46.22 55.21	-16.5 -15.0 -13.5 -12.0 -10.5 -9.0 -7.5 -6.0 -4.5 -3.0 -1.5 3.0 er:	422.9 568.1 731.2 910.7 1097 1273 1416 1540 1646 1733 1793 1830 1842 1827	15.0 16.5 18.0 19.5 21.0 22.5 24.0 25.5 27.0 28.5 30.0 31.5 33.0 34.5	722.6 560.0 412.6 278.4 197.8 140.4 102.3 77.98 62.97 52.36 44.18 37.74 32.91	48.0 49.5 51.0 52.5 54.0 55.5 57.0 58.5 60.0 61.5 63.0 64.5	16.01 14.97 13.87 12.74 11.75 10.84 9.913 9.030 8.258 7.529 6.850 6.175 5.593	78.0 79.5 81.0 82.5 84.0 85.5 87.0 88.5	1.832 1.525 1.221 0.9906 0.7251 0.4580 0.2896 0.1425
79.5 78.0 76.5 75.0 73.5 72.0 70.5 69.0 67.5 66.0 64.5 63.0 61.5 60.0 lect	1.345 1.619 1.935 2.253 2.579 2.884 3.204 3.568 4.008 4.500 5.058 5.712 6.336 7.016	-48.0 -46.5 -45.0 -43.5 -42.0 -40.5 -39.0 -37.5 -36.0 -34.5 -33.0 -31.5 -30.0 -28.5	14.48 15.70 16.66 19.11 20.41 21.90 23.68 25.99 29.29 33.77 39.16 46.22 55.21	-16.5 -15.0 -13.5 -12.0 -10.5 -9.0 -7.5 -6.0 -4.5 -3.0 -1.5 3.0 er:	422.9 568.1 731.2 910.7 1097 1273 1416 1540 1646 1733 1793 1830 1842	15.0 16.5 18.0 19.5 21.0 22.5 24.0 25.5 27.0 28.5 30.0 31.5 33.0 34.5	722.6 560.0 412.6 278.4 197.8 140.4 102.3 77.98 62.97 52.36 44.18 37.74	48.0 49.5 51.0 52.5 54.0 55.5 57.0 58.5 60.0 61.5 63.0 64.5	16.01 14.97 13.87 12.74 11.75 10.84 9.913 9.030 8.258 7.529 6.850 6.175 5.593	78.0 79.5 81.0 82.5 84.0 85.5 87.0 88.5	1.832 1.525 1.221 0.9906 0.7251 0.4580 0.2896 0.1425
79.5 78.0 76.5 75.0 73.5 72.0 70.5 69.0 67.5 66.0 64.5 63.0 61.5 60.0 1ect	1.345 1.619 1.935 2.253 2.579 2.884 3.204 3.568 4.008 4.008 4.008 5.058 5.712 6.336 7.016 ricit	-40.0 -46.5 -45.0 -43.5 -42.0 -39.0 -37.5 -36.0 -37.5 -36.0 -34.5 -33.0 -31.5 -30.0 -28.5	14.48 15.70 16.86 17.96 19.11 20.41 21.90 23.68 25.99 29.29 33.77 39.16 46.22 55.21 ramet	-16.5 -15.0 -13.5 -12.0 -10.5 -9.0 -7.5 -6.0 -4.5 -3.0 -1.5 0.0 1.5 3.0 er:	422.9 568.1 731.2 910.7 1097 1273 1416 1540 1646 1733 1793 1830 1842 1827	15.0 16.5 18.0 19.5 21.0 22.5 24.0 25.5 27.0 28.5 30.0 31.5 33.0 34.5	722.6 560.0 412.6 278.4 197.8 140.4 102.3 77.98 62.97 52.36 44.18 37.74 32.91	48.0 49.5 51.0 52.5 54.0 55.5 57.0 58.5 60.0 61.5 63.0 64.5	16.01 14.97 13.87 12.74 11.75 10.84 9.913 9.030 8.258 7.529 6.850 6.175 5.593	78.0 79.5 81.0 82.5 84.0 85.5 87.0 88.5	1.832 1.525 1.221 0.9906 0.7251 0.4580 0.2896 0.1425

HERCULUX 恒坤光电

 Equivalent bumindus filtx. * eff. 450.41m
 Efficiency: Eff. 154.50.80m


 Diffuse angle: @(25%): 34.5deg@(50%): 26.6deg@(75%): 18.4deg@(50%): 26.7deg

 Diffuse angle: @(25%): 35.1deg@(50%): 26.7deg@(75%): 18.6deg@(50%): 26.7deg

 Imax=1842cd (C=0.0deg,G=1.5deg)

 C0-180Plane Imax= 1842cd (C=1.5deg)

 C0-180Plane Imax= 1842cd (C=1.5deg)

-88.5	0.0451	-57.0	2.895	-25.5	34.83	6.0	565.4	37.5	7.872	69.0	1.085
-87.0	0.0902	-55.5	3.183	-24.0	43.60	7.5	534.1	39.0	6.950	70.5	0.9836
-85.5	0.1133	-54.0	3.490	-22.5	56.32	9.0	491.5	40.5	6.289	72.0	0.8658
-84.0	0.1921	-52.5	3.836	-21.0	74.19	10.5	445.9	42.0	5.761	73.5	0.7824
-82.5	0.2386	-51.0	4.198	-19.5	96.76	12.0	395.9	43.5	5.361	75.0	0.6827
-81.0	0.3394	-49.5	4.596	-18.0	127.3	13.5	334.7	45.0	5.011	76.5	0.5828
-79.5	0.4073	-48.0	5.025	-16.5	167.4	15.0	271.5	46.5	4.705	78.0	0.4981
-78.0	0.4984	-46.5	5.437	-15.0	215.1	16.5	216.6	48.0	4.408	79.5	0.4112
-76.5	0.5776	-45.0	5.895	-13.5	270.6	18.0	164.7	49.5	4.098	81.0	0.3400
-75.0	0.6689	-43.5	6.361	-12.0	332.6	19.5	119.2	51.0	3.778	82.5	0.2723
-73.5	0.7689	-42.0	6.899	-10.5	395.5	21.0	83.59	52.5	3.492	84.0	0.1834
-72.0	0.8696	-40.5	7.515	-9.0	452.0	22.5	59.51	54.0	3.194	85.5	0.1142
-70.5	0.9520	-39.0	8.256	-7.5	494.7	24.0	42.79	55.5	2.920	87.0	0.0577
- 69.0	1.069	-37.5	9.184	-6.0	529.1	25.5	32.00	57.0	2.637	88.5	0.0327
-67.5	1.228	-36.0	10.38	-4.5	556.3	27.0	25.09	58.5	2.391	90.0	0.0022
-66.0	1.430	-34.5	11.96	-3.0	579.0	28.5	20.65	60.0	2.179		
-64.5	1.633	-33.0	13.98	-1.5	595.3	30.0	17.35	61.5	1.945		
-63.0	1.839	-31.5	16.37	0.0	605.3	31.5	14.63	63.0	1.746		
-61.5	2.075	-30.0	19.38	1.5	607.7	33.0	12.35	64.5	1.580		
- 60.0	2.324	-28.5	23.38	3.0	601.5	34.5	10.57	66.0	1.377		

Electricity Parameter:

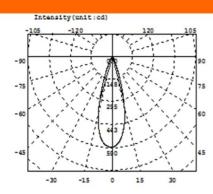
Frecu	CTGT (y rarameter:		
Current	I:	0.1500A	Power:	0.8300W
Voltage	V:	8.300V	PF:	0.000

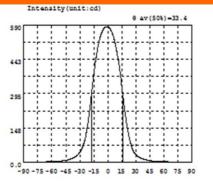
Optical Parameter (Distance=2.410m) :

 Equivalent luminous flux: # eff= 151.81m
 Efficiency: Eff=182.971m/W

 Diffuse angle:
 0(25%): 35.3deg 0(50%): 26.7deg 0(75%): 18.9deg 0(50%): 26.7deg

 Diffuse angle:
 0(25%): 35.4deg 0(50%): 26.9deg 0(75%): 19.1deg 0(50%): 26.9deg


 Imax=607.9cd (C=0.0deg,C=1.0deg)
 C0-180Plane Imax= 607.9cd (C=1.0deg)


 C0-180Plane Imax= 607.9cd (C=0.3deg
 C0-180Plane Imax= 607.3cd

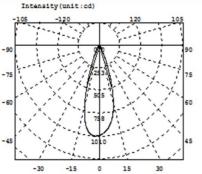
HERCULUX ^{恒坤光电}

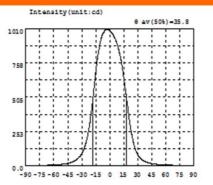
IES—CREE 1304 36°

Intensity data: (deg , cd) CO-180

λ	I	λ	I	λ	I	λ	I	λ	I	λ	I
-90.0	0.1354	-58.5	4.405	-27.0	65.84	4.5	556.3	36.0	17.81	67.5	2.618
-88.5	0.2032	-57.0	4.745	-25.5	83.34	6.0	539.1	37.5	15.50	69.0	2.339
-87.0	0.2820	-55.5	5.082	-24.0	107.0	7.5	516.0	39.0	13.48	70.5	2.055
-85.5	0.3620	-54.0	5.486	-22.5	139.0	9.0	486.9	40.5	11.87	72.0	1.838
-84.0	0.4977	-52.5	5.963	-21.0	178.5	10.5	455.5	42.0	10.47	73.5	1.627
-82.5	0.6113	-51.0	6.469	-19.5	222.2	12.0	419.6	43.5	9.282	75.0	1.451
-81.0	0.7696	-49.5	7.037	-18.0	273.2	13.5	377.1	45.0	8.239	76.5	1.302
-79.5	0.8941	-48.0	7.698	-16.5	326.5	15.0	322.9	46.5	7.493	78.0	1.210
-78.0	1.041	-46.5	8.525	-15.0	379.2	16.5	275.5	48.0	6.849	79.5	1.123
-76.5	1.234	-45.0	9.545	-13.5	423.9	18.0	229.7	49.5	6.247	81.0	1.032
-75.0	1.448	-43.5	10.68	-12.0	462.3	19.5	185.3	51.0	5.739	82.5	0.9619
-73.5	1.643	-42.0	12.15	-10.5	496.6	21.0	145.7	52.5	5.306	84.0	0.9166
-72.0	1.904	-40.5	13.93	-9.0	524.5	22.5	114.6	54.0	4.923	85.5	0.9250
-70.5	2.246	-39.0	16.12	-7.5	545.6	24.0	88.58	55.5	4.576	87.0	0.9150
- 69.0	2.583	-37.5	18.55	-6.0	561.9	25.5	67.83	57.0	4.268	88.5	0.9149
- 67.5	2.851	-36.0	21.60	-4.5	572.6	27.0	52.12	58.5	4.010	90.0	0.9577
-66.0	3.089	-34.5	25.37	-3.0	578.9	28.5	41.60	60.0	3.753		
-64.5	3.326	-33.0	30.01	-1.5	581.2	30.0	33.94	61.5	3.533		
-63.0	3.586	-31.5	35.44	0.0	580.9	31.5	28.16	63.0	3.309		
-61.5	3.814	-30.0	42.54	1.5	577.4	33.0	23.73	64.5	3.106		
- 60.0	4.108	-28.5	52.17	3.0	569.1	34.5	20.48	66.0	2.873		

Electricity Parameter:


Current	I:	0.1000A	Power:	3.299W
Voltage	V:	33.00V	PF:	1.000


Optical Parameter (Distance=2.410m) :

Equivalent Luminous	s flux: 4 eff= 216.91m	Efficiency: Eff=65.75lm/W
Diffuse angle:	@(25%): 43.2deg@(50%):	33.4deg@(75%): 24.3deg@(50%): 33.4deg
Diffuse angle:	@(25%): 43.2deg@(50%):	33.5deg @(75%): 24.3deg @(50%): 33.5deg
Imax=581.4cd (C=0.0	Ddeg,G=-1.Odeg)	CO-180Plane Imax= 581.4cd(G=-1.0deg)
		C0-180Plane IO= 580.9cd

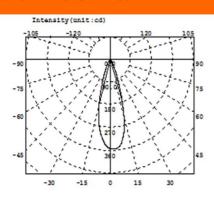
IES—LUMINUS CXM-6 36°

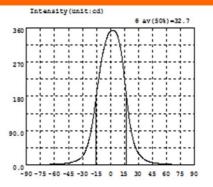
HERCULUX 恒坤光电

Intensity data: (deg , cd) CO-180

λ	I	λ	I	A	I	λ	I	λ	I	λ	I
-90.0	0.0451	-58.5	8.298	-27.0	137.6	4.5	952.4	36.0	39.32	67.5	5.136
-88.5	0.0563	-57.0	9.026	-25.5	171.6	6.0	930.9	37.5	33.87	69.0	4.740
-87.0	0.2366	-55.5	9.700	-24.0	212.6	7.5	904.1	39.0	29.37	70.5	4.308
-85.5	0.3510	-54.0	10.56	-22.5	266.0	9.0	870.0	40.5	25.76	72.0	3.836
-84.0	0.5008	-52.5	11.58	-21.0	334.8	10.5	829.5	42.0	22.67	73.5	3.229
-82.5	0.7830	-51.0	12.79	-19.5	410.1	12.0	780.9	43.5	20.03	75.0	2.619
-81.0	1.142	-49.5	14.03	-18.0	497.5	13.5	720.5	45.0	17.68	76.5	2.163
-79.5	1.437	-48.0	15.51	-16.5	593.4	15.0	648.7	46.5	15.86	78.0	1.651
-78.0	1.757	-46.5	17.35	-15.0	690.7	16.5	575.2	48.0	14.32	79.5	1.302
-76.5	2.197	-45.0	19.50	-13.5	771.7	18.0	498.5	49.5	12.97	81.0	1.031
-75.0	2.737	-43.5	21.90	-12.0	840.2	19.5	419.8	51.0	11.74	82.5	0.7680
-73.5	3.399	-42.0	24.75	-10.5	897.1	21.0	340.7	52.5	10.79	84.0	0.5148
-72.0	3.880	-40.5	28.35	-9.0	939.6	22.5	272.0	54.0	9.955	85.5	0.3014
-70.5	4.342	-39.0	32.82	-7.5	968.3	24.0	216.7	55.5	9.186	87.0	0.1543
- 69.0	4.759	-37.5	37.83	-6.0	986.9	25.5	169.8	57.0	8.497	88.5	0.0802
- 67.5	5.150	-36.0	44.13	-4.5	998.2	27.0	131.5	58.5	7.945	90.0	0.0575
-66.0	5.677	-34.5	52.25	-3.0	1002	28.5	103.7	60.0	7.456		
-64.5	6.172	-33.0	62.26	-1.5	1000	30.0	82.37	61.5	6.961		
-63.0	6.665	-31.5	73.82	0.0	994.1	31.5	66.34	63.0	6.500		
-61.5	7.132	-30.0	88.91	1.5	984.1	33.0	54.45	64.5	6.051		
- 60.0	7.735	-28.5	109.5	3.0	969.7	34.5	46.01	66.0	5.610		

Electricity Parameter:


Current I:	0.1500A	Power:	3.348W
Voltage V:	33.50V	PF:	0.000


Optical Parameter (Distance=2.410m) :

Equivalent Luminous flux: 4 eff= 420.61m Efficiency: Eff=125.64lm/W Diffuse angle: @(25%): 45.8deg@(50%): 35.8deg@(75%): 26.6deg@(50%): 35.8deg Diffuse angle: @(25%): 46.0deg@(50%): 36.0deg@(75%): 26.9deg@(50%): 36.0deg Imax=1002cd (C=0.0deg,G=-3.0deg) CO-180Plane Imax= 1002cd(G=-3.0deg) C0-180Plane IO= 994.1cd

IES—CITIZEN OBO 36°

Intensity data: (deg , cd) CO-180

λ	I	λ	I	λ	I	λ	I	λ	I	λ	I
-90.0	0.0226	-58.5	2.590	-27.0	35.69	4.5	350.5	36.0	15.78	67.5	1.737
-88.5	0.0225	-57.0	2.816	-25.5	44.73	6.0	346.5	37.5	13.41	69.0	1.608
-87.0	0.1232	-55.5	2.939	-24.0	56.12	7.5	339.5	39.0	11.58	70.5	1.393
-85.5	0.1572	-54.0	3.238	-22.5	70.65	9.0	326.0	40.5	10.05	72.0	1.278
-84.0	0.1500	-52.5	3.522	-21.0	88.58	10.5	308.7	42.0	8.732	73.5	1.147
-82.5	0.2846	-51.0	3.789	-19.5	108.2	12.0	286.8	43.5	7.700	75.0	0.9814
-81.0	0.4184	-49.5	4.221	-18.0	131.3	13.5	259.0	45.0	6.764	76.5	0.8065
-79.5	0.4940	-48.0	4.665	-16.5	157.5	15.0	226.3	46.5	6.079	78.0	0.6614
-78.0	0.5489	-46.5	5.269	-15.0	185.5	16.5	194.4	48.0	5.464	79.5	0.4952
-76.5	0.7370	-45.0	5.815	-13.5	208.2	18.0	162.8	49.5	4.920	81.0	0.3980
-75.0	0.8666	-43.5	6.521	-12.0	235.6	19.5	133.1	51.0	4.453	82.5	0.3451
-73.5	1.026	-42.0	7.357	-10.5	260.3	21.0	107.3	52.5	4.054	84.0	0.2919
-72.0	1.182	-40.5	8.372	-9.0	281.9	22.5	87.12	54.0	3.760	85.5	0.2328
-70.5	1.362	-39.0	9.509	-7.5	299.1	24.0	69.93	55.5	3.421	87.0	0.1729
- 69.0	1.537	-37.5	10.85	-6.0	314.5	25.5	55.95	57.0	3.118	88.5	0.0813
- 67.5	1.636	-36.0	12.36	-4.5	327.6	27.0	45.06	58.5	2.876	90.0	0.1015
-66.0	1.728	-34.5	14.11	-3.0	338.6	28.5	37.17	60.0	2.693		
-64.5	1.905	-33.0	16.52	-1.5	346.0	30.0	30.97	61.5	2.470		
-63.0	2.045	-31.5	19.24	0.0	350.5	31.5	25.84	63.0	2.274		
-61.5	2.264	-30.0	23.09	1.5	352.6	33.0	21.72	64.5	2.089		
- 60.0	2.423	-28.5	28.39	3.0	352.8	34.5	18.47	66.0	1.868		

Electricity Parameter:

Current I:	0.1500A	Power:	0.8290W
Voltage V:	8.300V	PF:	0.000

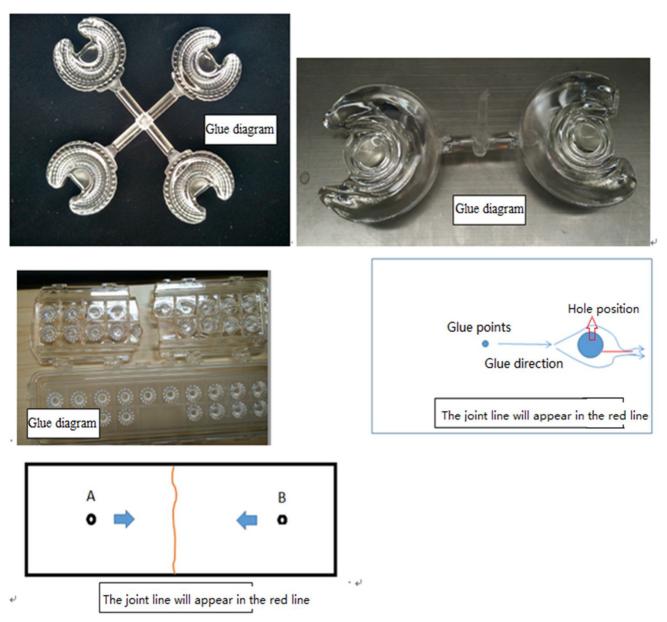
Optical Parameter (Distance=2.410m) :

Equivalent Luminous flux: Φ eff= 133.4lm Efficiency: Eff=160.92lm/W Diffuse angle: 0(25%): 43.4deg 0(50%): 32.7deg 0(75%): 23.3deg 0(50%): 32.7degDiffuse angle: <math>0(25%): 43.4deg 0(50%): 32.9deg 0(75%): 23.6deg 0(50%): 32.9degImax=353.0cd (C=0.0deg,G=2.5deg) C0-180Plane Imax= 353.0cd (G=2.5deg) C0-180Plane I0= 350.5cd

Sample size test report HK-35@18-XXdegrees lens

HERCULUX 恒坤光电

r							T		[T	
			Standar	rd size	Upper Size	limit	Lower siz	e limit	Test result1	Test result2	Test result3	Judgm	nent
							17935 35	5@18-1	5°				
	OD		35	5	35.1		34.85		34.97	34.91	34.99	OK	(
	Height1		17.3	35	17.5		17.2	5	17.41	17.36	17.39	OK	K
	Heigh		17.	.1	17.2		17		17.1	17.11	17.16	OK	(
			15.9	98	16.08		15.8	8	16.02	15.98	16.01	OK	K
	snacir	ומ					17935 35	5@18-2	4°				
	OD		35	5	35.1		34.8	5	34.93	34.91	34.9	OK	(
1.Size	Heigh	t1	17.3	35	17.6		17.3	5	17.56	17.55	17.46	OK	(
	Heigh	t2	17.	.1	17.25		17.1	1	17.18	17.19	17.18	OK	(
	Locatii colum	•	2		2.05		1.9		1.96	1.95	1.95	OK	(
							17935 35	5@18-3	6°		l		
	OD		35	5	35.1		34.8	5	34.97	35.01	34.9	OK	<
	Heigh	t1	17.3	35	17.55		17.3	5	17.48	17.5	17.5	OK	< Contract of the second s
	Heigh		17.	.1	17.25		17		17.2	17.16	17.19	OK	K
	colum colum	n	15.9	98	16.08		15.7	8	15.89	16	15.93	OK	K
				Gate shear can not affect the appearance of the lamp									
					See attac	hmer	nt "Appeara	nce Ins	pection Standa	ards"			
2 40000	2.Appearance "App Quality Ins						No burr		No burr	No burr No burr		burr	
			Inspectic Standard			E No si		ins No stains		No stains No s		stains	OK
3.Materia	al				PC				Color	Transparent			ОК
	Testing	LED		CREE 1304、LUMINUS CXM-6、CITIZEN OBO								L	
	FWHM	See light distribution curve											
4.Optica	\sim		17935	5 35@1	35@18-15°		17936	35@1	8-24°	24° 17937 3		36°	
l index	Angle	13°	-17°	16.9°	16.8°	2	22°-26°	24.4	° 24.6°	32°-38°	33.2°	33.4°	ОК
	Effiency	>	80%	87.45%	81.83%		>80%	84.98	% 85.98%	>80%	86.02%	84.22%	OK
	Facula	See	the signa	iture sar	ire sample								
	ehensive Iment								Qualified				
		1					roduct cir	o chon	gos with tom	noratura ta	blo		
Remarks				Len	oth	PCμ	nouuct siz	e chan	ges with tem	iperature ta	DIE		
	Number: \ 2D-Quadra			char	nges ⁹						Size: 5	0mm	
	1-Tool Mic			(m	0.7						Size: 1	.00mm	
	-Thick Ga		र-		0.6					X	Size: 1	.50mm	
	Bauge E-V environme		20 °C		0.5			-	Ж		←Size: 2	.00mm	
	vironmen		-		0.3			- C			←Size: 2	.50mm	
thermal equilibrium after the test. (Ambient temperature on				0.2			Î			Size: 3	00mm		
				0.1									
	the size of the product refer to the table on the right)				0		10	20	30	40			
the table	on the rig	nt)								(°C)			
Precautio		ves d	uring lens	s assem	bly to prever	nt con	Itamination	of the le	ens surface.				
2、Take	the lens ti	y to a	void touc	ching the	e total reflect	ion sı	urface.		otton sticky ne	at neutral solv	vent, not a	allowed to	wipe
	strial solve				-		<i>·</i> ·		-				-


Packaging Information

P	N	HK-35@18-XX-D4.	5-01-1g-1	Product Name	HK 35@18-XXdegrees ler		ees lens		
Product material		PC		Customer					
Package diagram		Single	Single Vacuum package Box package						
Due du et		18	A/ Box	4	Box/Floor	13	Floor/Carton		
Product	раскіпд	936	A/ Carton						
	NO.	Material Code	Item name	Specification	Single box usage	Unit	Remarks		
	1	2.07.0042	Blister box	23cm*21cm	52	PCS			
	2	2.08.0001	PE film	30cm*30cm	52	PCS			
Packagin	3	2.06.0005	Reel label paper	62cm*42cm	1	PCS			
g Materials	4	2.06.0005	Box label paper	62cm*70cm	1	PCS			
	5	2.06.0003	big plate	36cm*46.8cm	14	PCS			
	6	2.06.0001	big carton	36cm*46.8cm*42.8cn	n 1	PCS			
Remarks	Scattered packaging is not subject to this specification								

Special notice

When gule pass through holes, columns and other structures, or part of the thin structure, will form a weld line. The product which uses multi-point injection welding line will appear because of the combination of sol, as shown below:

Please note :

The appearance of lines in the structure of the product as well as at the screw hole is a normal phenomenon, will not affect the actual use of the product, and can not be avoided at this stage.

Appearance inspection standards

1 Operating procedures

1.1.1Sampling standards, sampling plan and AQL

Test level : GB/T2828.1-2012The first part is according to the acceptance quality limit (AQL) retrieval batch inspection sampling plan, general inspection level Π level, CR class defect coefficient 0, MA defect rejection level AQL = 0.65, MI class defect rejection level AQL = 1.0; defect level please see 5.4.

2 Code table

Code	Code description	Unit	Code	Code description	Unit
N	Amount/pcs	pcs	D	Diameter	mm
L	Length	mm	Н	Depth	mm
W	Width	mm	DS	Distance	mm
S	Proportion	mm²	SS	Offset	mm

3 Test conditions

3.1 Sight distance and working hours: Sight distance should be 30-35cm, each side of the inspection time does not exceed 12s, the visual angle of 45-135 degrees;

3.2 Light: 2x40w cool white fluorescent lamp, chip should be from the lens surface 500-550mm, in order to make the bad appearance can be correctly found, the illumination should not be less than 500Lux ;

3.3 Visual inspection staff should be 1.0 (including corrected visual acuity) above, no color blindness, color weakness.

4 Appearance inspection standards

Test items	ludeing standard	Inspection equipment	Defect level		
restitems	Judging standard	Testing method	MI	MA	CR
	When start the machine and process, all products have to check the appearance of the sample, the appearance of the sample is divided into qualified samples and limited samples.				
Check the sample	1: Qualified sample refers to the appearance and structure standard of the product which recognized by the client, the sample size should be confirmed before mass production;	Sample comparison , visual			V
	2: The limited sample refers to the limit of a particular exceptionally developed sample. Limit the sample only for its specific point of exception to confirm; The priority is higher than the other criteria in this table. When there is a limited sample, the limit sample shall prevail.				

Raw edge	Not allowed to affect the size and assembly	Visual,		√	
Scratch	1: Non-optical surface and non-exposed surface scratches should be visually insignificant and the length is less than 1/10 of the maximum surface size.	visual, point card, calipers		√	
Fingerprint	Fingerprints are not allowed on all products	Visual		√	
Foreign things, impurities	The product may not be attached to foreign objects, including oil, fiber, dregs of water gap and so on				V
Deformation	Insufficient filling shall not affect the appearance of the assembly and the exposed surfaces.	Visual, feeler			V
Poor ejection	Products may not appear bad ejection, including no convex top, thimble printed on the assembly surface shall not be higher than the product surface, non-assembled surface thimble height should not exceed the product size tolerances; thimble printing should be less than the product surface and no more than 0.3; thimble surface treatment should be consistent with the product side.	Visual, point card		V	
	Ejection strain: the optical surface and the appearance of the exposed surface after assembly are not allowed to have a strain, and the structural surface does not allow visual obvious strain.				
Insufficient filling	Insufficient filling shall not affect the appearance of the assembly and the exposed surfaces, The signature sample shall prevail.	Visual, point card		V	
Shrink	When the entire surface of the product shrinks, the optical properties and dimensions must meet the requirements, and the visual will not significantly affect the appearance.Part shrink reference point defects	Visual, point card		v	
Flow marks、Welding line	 Product does not allow the presence of flow marks and welding lines unless the structure can not be avoided; The remaining flow marks shall not appear in the optical surface, a single L ≤ 10mm, no more than two 	Visual		V	
Bubble	No bubbles are allowed	Visual		V	
Foreign matter、Dark spots	Not obvious or $D \le 0.3$ mm black spots and foreign bodies in the area of 100x100mm not more than 1; Exceeded foreign matter black spots is judged bad.	Visual, point card	V		
Damaged	No damage is allowed	Visual			\checkmark

Cold glue	Optical surface may not have cold glue, non- optical surface cold glue should meet the visual is not obvious.	Visual	~		
	1: Do not affect the product size, shall not penetrate the optical surface, the cut should be smooth;				
Bad incision	2: Laser cutting products, the optical surface burns shall not occur after the processing is completed. Beading must not affect product installation	Visual			V
	3: Three molds and hot runner gate shall not appear residue.				
Scrub	Scrub surface should be uniform, off the scrub phenomenon should not be obvious , A single off scrub imprint requires $D \le 1$ mm and no more than 1 area within a 50x50 mm area	Visual		~	