THE WORLD'S OBAIR

In the vast global innovation landscape, "Obair" shines like a brilliant star, leading the wave of technological innovation.

We are not just a company, but also advocates and practitioners of the global upgrade in quality of life

In the world of Obair, technological innovation is not only a driving force but also the soul.

We firmly believe that "Obair" will resonate in every corner of the world, representing excellence, quality, and dreams.

We cross mountains and seas, connecting the five continents, adding a bright color to the global stage of life, becoming a synonym for beauty in the hearts of people around the world, and together writing a glorious chapter in human civilization.

The related products of Oubo have obtained the above certification, and the specific product certification is detailed in the relevant product certification certificate

Haojin Oubo Technology Co.,Ltd

Address: Oubo Industrial Park, Oubo Road, Oubo Avenue, Ganzhou City, Jiangxi Province Website: www.oubokt.com National Free Service Hotline: 400-915-8448

Official WeChat

Version NO.: OB-202502A Haojin Oubo Technology CO., LTD

> COMPANY PROFILE

Haojin Oubo Technology Co., Ltd. is a large-scale purification central air conditioning national high-tech enterprise integrating research and development, production, sales, and service.

Obair has always adhered to technological innovation, participated in the formulation of national and industry standards as a member unit of China's "Cold Standard Committee", and has obtained multiple invention patents and utility model patents. It has established industry-university-research bases with Nanchang University and Jiangxi University of Science and Technology. It is a key demonstration enterprise for deep integration of informatization and industrialization in Jiangxi Province, a demonstration enterprise for service-oriented manufacturing in Jiangxi Province, and the company has successively won honors such as Jiangxi Province Technology Center, Ganzhou City Industrial Design Center, Jiangxi Famous Brand Product, national green factory, and national specialized and innovative "little giant" enterprise.

Obair currently has two phases in Ganzhou, Jiangxi, using digital park management, with over 120 digital production equipment, achieving an annual production capacity of 100,000 units.

Obair currently has more than 1000 models of high-quality air conditioning products independently developed, and the products have obtained energy-saving certification, CRAA, EU CE certification, American AHRI certification and other authoritative institutions' testing and certification, widely used in hospitals, dust-free workshops, pharmaceutical factories, electronics, tobacco, painting, photovoltaic, new energy, semiconductor, laboratory and other industries, and has the industry reputation of "King of Cleanliness" and "King of Constant Temperature and Humidity Non-standard".

Obair strictly implements the ISO9001/ISO14001/ISO45001 management system, always practices the purpose of "willing to explain the price for a while, but not to apologize for the quality for a lifetime", proposes the "6-hour" on-site service concept for all customers and for all customers, and provides the most professional and high-quality technical support and after-sales service.

From the mission, born for purification!

Obair, your regret-free choice!

170,000 square meters of complete machine production base

70+
National Service Contact Points

1000 employees

100,000+
Pilot Project Air Conditioning Solutions

HONORARY QUALIFICATIONS

Advanced equipment, professional technology and strict management have created the high quality of "OBAIR" brand products.

It has successively won dozens of honors such as national high-tech enterprise, China's well-known brand, specialized and special new enterprise, cold standard committee enterprise, provincial service-oriented manufacturing demonstration enterprise, provincial enterprise technology center, Jiangxi famous brand product, etc.

"OBAIR" products are your reliable choice.

Haojin Oubo Technology CO., LTD

Full-Flow Water (Ground) Source Heat Pump Unit

All-round Protection System

The system monitors all equipment components in real-time during operation. It automatically raises alarms when abnormal conditions are detected, enabling intelligent control and comprehensive protection of the unit.

Safe and Reliable

When the unit uses a dual - compressor system, it has separate refrigerant circuits. During partial load, they can back each other up, improving overall reliability and safety.

High - efficiency and Energy - saving

Using the latest high - efficiency semi - hermetic twin - screw compressors. Motors directly drive rotors, ensuring few parts, high volumetric efficiency, and high energy efficiency.

Intelligent Control

It uses a central - air - conditioning intelligent control system with a true - color HD touch screen, greatly improving user experience.

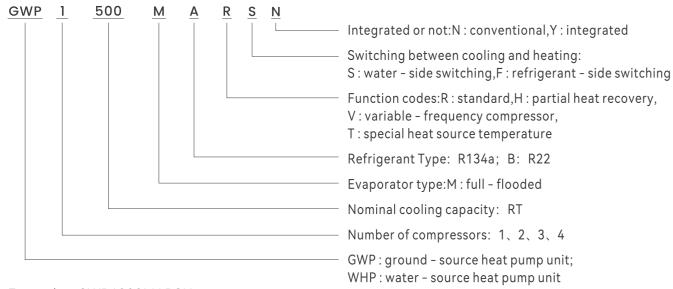
CONTENTS

Product Overview ————————————————————————————————————	01	Unit Hoisting and Moving	15
Model Explanation	01	Installation Foundation ————	15
Product Features ————	02	Engine Room Requirements ——	16
Unit Operating Range ————	04	Water System Piping ————	16
Water Quality Requirements	04	Water System Piping Drawing —	17
Technical Data Sheet ————	05	Electrical Wiring	17
Unit Outline Drawing ————	11		

>>> Product Overview

The full - flooded water - (ground) - source heat pump unit is an energy - saving air - conditioning unit developed by OBAIR, considering China's geographical, climatic conditions, and the current clean - energy utilization context. It uses groundwater and surface water (with relatively stable temperatures) for energy conversion, achieving summer cooling and winter heating, and combines energy - saving, environmental protection, and high - efficiency features.

The unit consists of a full - flooded semi - hermetic twin - screw compressor, an efficient oil separator, a shell and - tube condenser, a full - flooded evaporator, an electronic expansion valve, an oil return system, an ejector system, and a smart control system. Its simple system and high reliability are notable.


The unit is suitable for areas with abundant groundwater, surface water, or geothermal resources. It's ideal for the Yangtze River Basin and northern China's summer - hot - winter - cold regions, and can be widely used in large commercial buildings, public buildings, residential apartments, hotels, schools, and hospitals.

Water - source heat pumps are suitable when there's enough nearby surface water (e.g., river, lake, sea, reservoir water, wastewater, reclaimed water, geothermal tailwater, industrial wastewater) with adequate volume and suitable temperature (some water quality treatment may be needed).

Ground - source heat pumps are suitable when there's insufficient water resources near the building but enough space to install "ground - buried pipes" (e.g., office building sites, school playgrounds, villa gardens).

>> Model Explanation

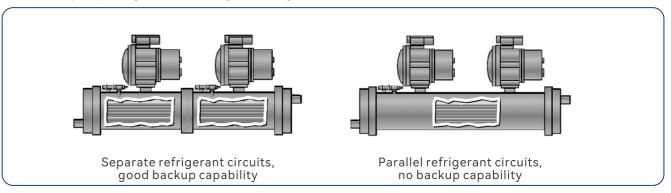
Example: GWP1300MARSN

OBAIR R134a full - flooded ground - source heat pump unit with 1050kW cooling capacity and 1 compressor.

Product Features

High - efficiency Compressor

The semi - hermetic twin - screw compressor for full - flooded systems has rotors precision - machined by dedicated high - accuracy rotor grinders, ensuring high precision, stable quality, and minimal leakage. Their new - generation rotor teeth are highly rigid. Under long - term operation, they maintain optimal clearance for maximum volumetric efficiency. The compressor's precise slide - valve stepless capacity control ensures water temperature accuracy, providing reliable performance for high - precision applications.



Dual - system Independent Design

When the unit uses a dual - compressor system, it has separate refrigerant circuits. During partial load, they can back each other up, improving overall reliability and safety.

Oil Return Ejector Technology

Based on the built-in high - efficiency oil separator in the compressor, OBAIR has added an independent horizontal high - capacity oil separator between the compressor discharge and the water - cooled condenser, achieving an oil separation rate of up to 99.9%.

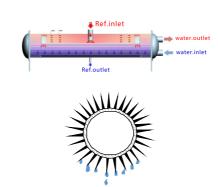
The real - time oil return ejector system uses the high - pressure gaseous refrigerant in the condenser as power. It employs a dedicated ejector pump. After data collection and analysis by the unit's intelligent control system, it precisely draws back oil from the full - flooded evaporator, ensuring no oil shortage in the compressor. It also guarantees no oil film thermal resistance on the heat - exchange tubes' surface, maintaining the evaporator's optimal heat - exchange efficiency.

Full - flooded Evaporator

The heat exchanger of this series uses super - efficient double - sided enhanced heat - transfer tubes. These tubes are designed with advanced technology for different heat - transfer mechanisms and fluid media, ensuring optimal heat - transfer efficiency and reduced pressure drop. The advanced full - flooded evaporation and cooling technologies make the heat exchange between water and refrigerant approach a small temperature difference, improving heat - transfer and energy efficiency. This maximizes cooling effect and minimizes users' energy consumption.

High - efficiency heat - transfer tubes dedicated for full - flooded systems

Full - flooded evaporator's refrigerant process



>> Product Features

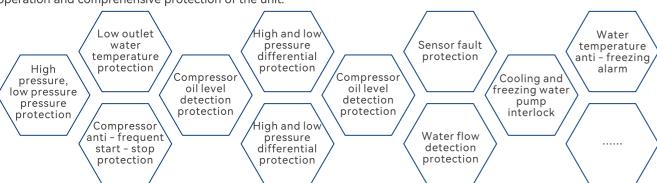
Condenser

The high - efficiency shell - and - tube condenser uses serrated - finned tubes to boost the heat - transfer coefficient. The water side is designed with two passes and straight copper tubes for easy cleaning and maintenance. The end caps on both sides are interchangeable, facilitating on - site water pipe direction changes. The condenser's bottom has a sub - cooling section to ensure refrigerant sub - cooling, enhancing the unit's cooling efficiency.

Advanced throttling device

The unit uses advanced electronic expansion valves for precise refrigerant flow control across all conditions. OBAIR's proprietary control logic, based on suction and discharge superheat, fully utilizes the evaporator's heat - transfer capacity while ensuring the compressor operates safely and efficiently.

Intelligent Control System


The unit uses a PLC - based intelligent control system with an LCD touch screen as the local HMI. Users can monitor and control the entire unit via the HMI, achieving high - automation operation and a great user experience. The industrial - grade microcontroller and LCD touch screen form the control core, with world - famous brand electrical control components that are highly reliable and anti interference, adapting to complex and harsh working conditions.

All-round Protection System

P: 03

The unit has various sensors and switches (pressure, temperature, flow) and safety devices (safety valves, solenoid valves, oil pressure differential controllers, high - low pressure switches). They form a precise automatic control system with the unit's intelligent controller. During operation, this system real - time monitors all components. If abnormal conditions occur, it automatically alarms and triggers protective measures via control switches, ensuring intelligent operation and comprehensive protection of the unit.

>> Unit Operating Range (Under Rated Water Flow)

	Project	Unit	Water source heat pump	Ground - source heat pump
Caalina	Service side outlet water temperature	°C	5 ~ 15℃	5 ~ 15°C
Cooling	Heat source inlet water temperature	°C	10 ~ 25℃	10 ~ 40°C
	Service side outlet water temperature	°C	40 ~ 60°C	40 ~ 60°C
Heating	Heat source inlet water temperature	°C	10 ~ 25℃	5 ~ 25°C
\	Nater flow rate	m³/h	70% ~ 110%	70% ~ 110%

Note: If the actual operating conditions of the unit exceed the above - mentioned range, it is necessary to carry out special design for the unit or system based on the actual operating conditions. Please contact us for customized design.

>> Water Quality Requirements

The quality of cooling and chilled water entering the unit should be checked and managed during operation, as water quality varies by region. If the water doesn't meet requirements, treatment is necessary. The table below lists some water - quality parameters for open systems. Regular sampling and testing should be conducted to ensure compliance. Please note that we do not guarantee the use of improperly treated or untreated non - standard water, nor do we guarantee that this series of units can use brine.

	Project	Unit	Cooling water & Chilled water	Make – up water	Corrosion	Scaling
	PH Value (25°C)	-	6.5~8.0	6.5~8.0	•	•
Bas	Conductivity (25°C)	us/cm	<800	<200	•	•
Baseline	Chloride ion	mgCl ⁻ /L	<200	<50	•	
eitem	Sulfate ion	mgSO ₄ ²⁻ /L	<200	<50	•	
3	Acid consumption (PH=4.8)	mgCaCO ₃ /L	<100	<50		
	Total hardness	$mgCaCO_3/L$	<200	<70		•
R	Iron	mgFe/L	<1.0	<0.3	•	
Reference project	Sulfide ion	mgSO ₄ ²⁻ /L	Not detected	Not detected	•	
ect	Ammonium ion	$mgNH_4^+/L$	<1.0	<1.0	•	
	Silica	mgSiO ₂ /L	<50	<30		•

- 1. Water quality criteria are based on Appendix D of GB/T 18430.1-2007 "Steam Compression Cycle Chilled (Heat Pump) Units" for cooling water.
- 2. " " in the table indicates factors related to corrosion or scaling.
- 3. If water quality doesn't meet the above requirements, treat it according to GB50050-2007 "Industrial Circulating Cooling Water Treatment Design Code".

>> Technical Data Sheet (WHP Series Single Compressor)

	Model	WHP***MARSN		1080	1090	1110	1120	1135	1150	1170		
	Co	ooling Capacity	kW	291	326	387	423	475	531	600		
	Co	oling Input Power	kW	45.0	50.6	60.0	65.5	73.3	81.9	92.9		
	Coc	ling Input Current	А	79.2	89.1	105.6	115.3	129.0	144.1	164.4		
	Coo	ling Efficiency EER	W/W	6.47	6.44	6.45	6.46	6.48	6.48	6.46		
Cooling		Water Flow Rate	m³/h	50	56	67	73	82	91	103		
Operating Conditions	Evaporator	Water Pressure Drop	kPa	47	46	47	50	50	48	57		
		Pipe Connection Size	mm	DN100	DN100	DN125	DN125	DN125	DN125	DN125		
		Water Flow Rate	m³/h	30	34	40	44	49	55	62		
	Condenser	Water Pressure Drop	kPa	23	24	24	24	23	21	24		
		Pipe Connection Size	mm	DN100	DN100	DN125	DN125	DN125	DN125	DN125		
	He	eating Capacity	kW	299	336	398	435	489	546	618		
	He	ating Input Power	kW	58.9	64.4	76	85	94.8	94.8 104.7			
	Hea	ting Input Current	А	103.7	113.3	133.8	149.6	166.8	184.3	210.3		
	Heat	ing Efficiency COP	W/W	5.08	5.22	5.24	5.12	5.16	5.21	5.20		
Heating		Water Flow Rate	m³/h	30.0	33.6	39.9	43.6	48.9	54.7	61.8		
Operating Conditions	Evaporator	Water Pressure Drop	kPa	21	23	21	23	24	23	21		
		Pipe Connection Size	mm	DN100	DN100	DN125	DN125	DN125	DN125	DN125		
		Water Flow Rate	m³/h	50.1	56.1	66.6	72.8	81.7	91.3	103.2		
	Condenser	Water Pressure Drop	kPa	45	47	49	47	49	49	50		
		Pipe Connection Size	mm	DN100	DN100	DN125	DN125	DN125	DN125	DN125		
Annual Con	nprehensive	Energy Efficiency ACOP	kW/kW	5.85	5.90	5.92	5.87	5.90	5.93	5.91		
	Energy	/ Efficiency Rating		Level 2	Level 1	Level 1	Level 2	Level 1	Level 1	Level 1		
		Quantity					1					
Compresso	r	Туре			Se	emi-hermet	ic Twin-scre	w Compress	or			
		Startup Method					Υ-Δ					
	Partial Loa	d Energy Modulation Ra	nge			Steples	s Energy Mo	dulation				
Un	it Maximum	Operating Current	А	158	172	203	227	254	280	320		
	Unit Start	ing Current	А	242	272	322	352	393	440	502		
- 61		Туре					R134a					
Refrigerant		Charge	kg	90	101	120	131	147	164	185		
		L(A)	mm	3000	3000	3010	3010	3010	3010	3010		
Dime	nsions	W (B)	mm	1300	1300	1350	1350	1350	1350	1350		
		H (C)	mm	1800	1800	1850	1850	1850	1850	1850		
		Naight	kg	2410	2450	2590	2710	2820	2950	3400		
	Unit \	veignt	9			2500 2500 2700 2820 2950 3100 3550						

P: 05

Cooling operating conditions: chilled water outlet temperature 7°C, water flow rate = cooling capacity × 0.172 m³/(h·kW), groundwater inlet temperature 18°C, water flow rate = cooling capacity \times 0.103 m³/(h·kW).

Heating operating conditions: hot water outlet temperature 45°C, flow rate same as the evaporator water flow rate at the rated cooling condition, heat source inlet temperature 15°C, flow rate same as the condenser water flow rate at the rated cooling condition.

- 2. Energy efficiency rating is determined according to standard GB 30721-2014.
- 3. The evaporator and condenser are designed with two-pass, with a maximum operating pressure of 1.0MPa in the water chamber, and use
- 4. Power supply system: 380V/3N~/50Hz.
- 5. We reserve the right to modify the samples without prior notice to make our products adaptable to customers.

>> Technical Data Sheet (WHP Series Single Compressor)

	Model \	WHP****MARSN		1190	1210	1230	1250	1285	1310	1340
	Co	ooling Capacity	kW	674	744	812	893	1015	1104	1215
	Cod	oling Input Power	kW	104.2	115.2	125.3	138.5	156.9	171.0	186.5
	Coo	ling Input Current	А	184.4	203.9	223.0	246.5	279.3	304.4	332.0
	Coo	ling Efficiency EER	W/W	6.47	6.46	6.48	6.45	6.47	6.46	6.51
Cooling		Water Flow Rate	m³/h	116	128	140	154	175	190	209
Operating Conditions	Evaporator	Water Pressure Drop	kPa	61	71	71	71	73	71	77
		Pipe Connection Size	mm	DN125	DN150	DN150	DN150	DN150	DN200	DN200
		Water Flow Rate	m³/h	69	77	84	92	105	114	125
	Condenser	Water Pressure Drop	kPa	23	26	25	30	33	30	31
		Pipe Connection Size	mm	DN125	DN150	DN150	DN150	DN150	DN200	DN200
	Не	eating Capacity	kW	694	766	835	918	1044	1136	1250
	Неа	ating Input Power	kW	136.3	145.9	165.4	175.5	198.9	234.4	
	Hea	ting Input Current	А	241.3	258.2	294.4	312.4	354.0	379.7	417.2
	Heat	ing Efficiency COP	W/W	5.09	5.25	5.05	5.23	5.25	5.33	5.33
Heating		Water Flow Rate	m³/h	69.4	76.6	83.6	92.0	104.5	113.7	125.1
Operating Conditions	Evaporator	Water Pressure Drop	kPa	24	29	27	30	30	29	33
		Pipe Connection Size	mm	DN125	DN150	DN150	DN150	DN150	DN200	DN200
		Water Flow Rate	m³/h	115.9	128.0	139.7	153.6	174.6	189.9	209.0
	Condenser	Water Pressure Drop	kPa	50	53	53	57	57	57	59
		Pipe Connection Size	mm	DN125	DN150	DN150	DN150	DN150	DN200	DN200
Annual Con	nprehensive	Energy Efficiency ACOP	kW/kW	5.86	5.93	5.85	5.91	5.93	5.96	5.99
	Energy	/ Efficiency Rating		Level 2	Level 1	Level 2	Level 1	Level 1	Level 1	Level 1
		Quantity					1			
Compressor		Туре			Se	mi-hermeti	c Twin-scre	w Compress	or	
		Startup Method					Υ-Δ			
	Partial Load	d Energy Modulation Ra	nge			Stepless	Energy Mo	dulation		
Un	it Maximum (Operating Current	А	368	394	449	476	540	579	638
	Unit Start	ing Current	А	563	622	680	752	852	928	1013
		Туре					R134a			
Refrigerant		Charge	kg	208	230	251	276	314	341	375
		L (A)	mm	3350	3350	3350	3350	3350	3550	3550
Dime	nsions	W (B)	mm	1400	1400	1400	1400	1400	1550	1550
		H (C)	mm	1950	1950	1950	1950	1950	2050	2050
	Unit \	Veight	kg	3530	3600	3750	4230	4830	5250	5755
				3700	3800		4450	5100		

Cooling operating conditions: chilled water outlet temperature 7°C, water flow rate = cooling capacity × 0.172 m³/(h·kW), groundwater inlet temperature 18°C, water flow rate = cooling capacity \times 0.103 m³/(h·kW).

Heating operating conditions: hot water outlet temperature 45°C, flow rate same as the evaporator water flow rate at the rated cooling condition, heat source inlet temperature 15°C, flow rate same as the condenser water flow rate at the rated cooling condition.

- 2. Energy efficiency rating is determined according to standard GB 30721-2014.
- 3. The evaporator and condenser are designed with two-pass, with a maximum operating pressure of 1.0MPa in the water chamber, and use clamp connections.
- 4. Power supply system: 380V/3N~/50Hz.
- 5. We reserve the right to modify the samples without prior notice to make our products adaptable to customers.

^{1.} The above parameters are based on the national standard GB/T 19409-2013:

^{1.} The above parameters are based on the national standard GB/T 19409-2013:

>> Technical Data Sheet (WHP Series Dual Compressor)

	Model	WHP***MARSN	1	2270	2310	2350	2380	2410	2470	2530	2570	2610	2660
	Cooling Capacity		kW	950	1061	1201	1348	1488	1623	1785	2030	2208	2430
	Coolir	ng Input Power	kW	146.5	163.8	185.8	208.3	230.3	250.6	277.0	313.9	342.0	376.7
	Coolin	g Input Current	А	261.5	292.4	331.7	371.8	411.1	448.6	495.8	561.9	612.2	674.3
Coo	Cooling	g Efficiency EER	W/W	6.48	6.48	6.46	6.47	6.46	6.48	6.44	6.47	6.46	6.45
Conc	E <	Water Flow Rate	m³/h	163	182	207	232	256	279	307	349	380	418
Cooling Operating Conditions	Evaporator	Water Pressure Drop	kPa	41	78	71	78	76	79	79	81	88	89
ratin ns	ator	Pipe Connection Size	mm	DN150	DN200	DN200	DN200	DN200	DN200	DN250	DN250	DN250	DN250
Q	Co	Water Flow Rate	m³/h	98	109	258	290	320	349	384	436	475	522
	Condenser	Water Pressure Drop	kPa	26	30	28	28	26	31	31	33	33	34
	nser	Pipe Connection Size	mm	DN150	DN200	DN200	DN200	DN200	DN200	DN250	DN250	DN250	DN250
	Heati	ng Capacity	kW	978	1092	1236	1388	1531	1670	1837	2089	2272	2500
	Heatir	ng Input Power	kW	189.5	209.3	237.6	272.6	291.6	330.9	351.1	397.8	426.6	468.9
_	Heatin	g Input Current	А	338.3	373.6	424.1	486.6	520.5	590.7	626.7	710.1	761.5	837.0
Heat C	Heating	Efficiency COP	W/W	5.16	5.22	5.20	5.09	5.25	5.05	5.23	5.25	5.33	5.33
Heating Operating Conditions	Eva	Water Flow Rate	m³/h	97.9	109.3	258.2	289.8	319.9	348.9	383.8	436.5	474.7	522.5
Oper	Evaporator	Water Pressure Drop	кРа	21	29	29	29	28	30	31	33	34	33
atin	ator	Pipe Connection Size	mm	DN150	DN200	DN200	DN200	DN200	DN200	DN250	DN250	DN250	DN250
О	Cor	Water Flow Rate	m³/h	163.4	182.5	206.6	231.9	255.9	279.2	307.0	349.2	379.8	418.0
	Condense	Water Pressure Drop	кРа	54	57	61	57	55	61	63	67	71	76
	_ ~	Pipe Connection Size	mm	DN150	DN200	DN200	DN200	DN200	DN200	DN250	DN250	DN250	DN250
Annual	Compre Efficien	hensive Energy cy ACOP	kW/kW	5.90	5.92	5.91	5.86	5.93	5.85	5.91	5.93	5.96	5.96
	Energy I	Efficiency Rating	J	Level 1	Level 1	Level 1	Level 1	Level 1	Level 1	Level 1	Level 1	Level 1	Level 1
Compressor		Quantity						:	2				
pres		Туре					Semi-her	metic Twir	-screw Co	mpressor			
ssor		Startup Method						Y-	-Δ				
Partial	Load En	ergy Modulation	Range				Ste	oless Ener	gy Modula	tion			
Unit Ma	ximum O	perating Current	А	518	572	649	744	796	904	959	1086	1165	1281
	nit Starti	ng Current	А	588	658	746	837	925	1009	1116	1264	1377	1517
Refrigerant		Туре						R1:	34a				
erant		Charge	kg	293	328	371	416	460	501	551	627	682	751
		L(A)	mm	4460	4460	4460	4900	4900	4900	4900	4900	5450	5450
Dimer	sions	W (B)	mm	1400	1400	1400	1600	1600	1600	1600	1800	1800	1800
		H (C)	mm	2150	2150	2150	2150	2150	2150	2150	2250	2250	2250
	Unit V	Veight	kg	4940	5240	6070	6300	6480	6900	8500	8750	9430	10350
(Operatin	g Weight	kg	5250	5600	6450	6700	6900	7400	7950	8140	8820	9650

Note:

P: 07

1. The above parameters are based on the national standard GB/T 19409-2013:

Cooling operating conditions: chilled water outlet temperature 7°C, water flow rate = cooling capacity × 0.172 m³/(h·kW), groundwater inlet temperature 18°C, water flow rate = cooling capacity \times 0.103 m³/(h·kW).

Heating operating conditions: hot water outlet temperature 45°C, flow rate same as the evaporator water flow rate at the rated cooling condition, heat source inlet temperature 15°C, flow rate same as the condenser water flow rate at the rated cooling condition.

- 2. Energy efficiency rating is determined according to standard GB 30721-2014.
- 3. The evaporator and condenser are designed with two-pass, with a maximum operating pressure of 1.0MPa in the water chamber, and use
- 4. Power supply system: 380V/3N~/50Hz.
- 5. We reserve the right to modify the samples without prior notice to make our products adaptable to customers.

>> Technical Data Sheet (GWP Series Single Compressor)

	Model (GWP****MARSN		1080	1090	1110	1120	1135	1150	1170		
	Со	oling Capacity	kW	288	323	383	418	470	525	594		
	Cod	oling Input Power	kW	45.9	51.0	60.6	65.5	74.2	82.8	94.5		
	Coo	ling Input Current	А	80.8	89.8	106.7	115.3	130.6	145.7	167.3		
	Cool	ing Efficiency EER	W/W	6.27	6.33	6.32	6.38	6.33	6.34	6.29		
Cooling		Water Flow Rate	m³/h	50	56	66	72	81	90	102		
Operating Conditions	Evaporator	Water Pressure Drop	kPa	47	46	47	50	50	48	57		
		Pipe Connection Size	mm	DN100	DN100	DN125	DN125	DN125	DN125	DN125		
		Water Flow Rate	m³/h	62	69	82	90	101	113	128		
	Condenser	Water Pressure Drop	kPa	47	48	46	45	45	61	64		
		Pipe Connection Size	mm	DN100	DN100	DN125	DN125	DN125	DN125	DN125		
	Не	eating Capacity	kW	294	326	387	431	484	536	606		
	Неа	ating Input Power	kW	58.4	63.9	75.4	87.1	98.1	98.1 107.3			
	Hea	ting Input Current	А	102.8	112.5	132.7	153.3	172.7	188.8	210.3		
	Heat	ing Efficiency COP	W/W	5.03	5.10	5.13	4.95	4.93	5.00	5.10		
Heating		Water Flow Rate	m³/h	62	69	82	90	101	113	128		
Operating Conditions	Evaporator	Water Pressure Drop	kPa	55	54	64	69	69	67	75		
		Pipe Connection Size	mm	DN100	DN100	DN125	DN125	DN125	DN125	DN125		
		Water Flow Rate	m³/h	50	56	66	72	81	90	102		
	Condenser	Water Pressure Drop	kPa	45	47	49	47	49	49	50		
		Pipe Connection Size	mm	DN100	DN100	DN125	DN125	DN125	DN125	DN125		
Annual Con	prehensive	Energy Efficiency ACOP	kW/kW	5.73	5.79	5.80	5.75	5.72	5.75	5.76		
	Energy	Efficiency Rating		Level 1	Level 1	Level 1	Level 1	Level 1	Level 1	Level 1		
		Quantity					1					
Compressor		Туре			Se	mi-hermeti	c Twin-scre	w Compress	or			
		Startup Method					Y-Δ					
	Partial Load	d Energy Modulation Rai	nge			Stepless	Energy Mo	dulation				
Un	it Maximum (Operating Current	А	156	171	202	233	262	287	320		
	Unit Start	ing Current	А	246	274	325	352	398	444	510		
Dofrigorant		Туре					R134a					
Refrigerant		Charge	kg	90	101	120	131	147	164	185		
		L(A)	mm	3000	3000	3010	3010	3010	3010	3010		
Dime	nsions	W (B)	mm	1300	1300	1350	1350	1350	1350	1350		
		H (C)	mm	1800	1800	1850	1850	1850	1850	1850		
	Unit V	Veight	kg	2410	2450	2590	2710	2820	2950	3400		
	Operation	ng Weight	kg	2500	2500	2700	2820	2950	3100	3550		

Note:

1. The above parameters are based on the national standard GB/T 19409-2013:

Cooling operating conditions: chilled water outlet temperature 7°C, water flow rate = cooling capacity × 0.172 m³/(h·kW), groundwater inlet temperature 25°C, water flow rate = cooling capacity \times 0.215 m³/(h·kW).

Heating operating conditions: hot water outlet temperature 45°C, flow rate same as the evaporator water flow rate at the rated cooling condition, heat source inlet temperature 10° C, flow rate same as the condenser water flow rate at the rated cooling condition.

- 2. Energy efficiency rating is determined according to standard GB 30721-2014.
- 3. The evaporator and condenser are designed with two-pass, with a maximum operating pressure of 1.0MPa in the water chamber, and use clamp connections.
- 4. Power supply system: 380V/3N~/50Hz.
- 5. We reserve the right to modify the samples without prior notice to make our products adaptable to customers.

>> Technical Data Sheet (GWP Series Single Compressor)

	Model	GWP***MARSN		1190	1210	1230	1250	1285	1310	1340	
	Co	oling Capacity	kW	667	736	803	883	1004	1092	1202	
	Cod	oling Input Power	kW	105.4	116.5	127.8	140.1	158.8	173.0	191.8	
	Coo	ling Input Current	А	186.6	206.2	227.5	249.4	282.7	307.9	341.4	
	Coo	ing Efficiency EER	W/W	6.33	6.32	6.28	6.30	6.32	6.31	6.27	
Cooling		Water Flow Rate	m³/h	115	127	138	152	173	188	207	
Operating Conditions	Evaporator	Water Pressure Drop	kPa	61	71	71	71	73	71	77	
		Pipe Connection Size	mm	DN125	DN150	DN150	DN150	DN150	DN200	DN200	
		Water Flow Rate	m³/h	143	158	173	190	216	235	258	
	Condenser	Water Pressure Drop	kPa	66	64	67	67	64	67	67	
		Pipe Connection Size	mm	DN125	DN150	DN150	DN150	DN150	DN200	DN200	
	Не	ating Capacity	kW	687	751	827	901	1024	1114	1226	
	Hea	ating Input Power	kW	136.3	148.3	166.8	180	200.5	236.3		
	Hea	ting Input Current	А	241.3	262.5	296.9	320.4	356.9	382.7	420.6	
	Heat	ing Efficiency COP	W/W	5.04	5.06	4.96	5.01	5.11	5.18	5.19	
Heating		Water Flow Rate	m³/h	143	158	173	190	216	235	258	
Operating Conditions	Evaporator	Water Pressure Drop	kPa	78	87	87	87	89	87	93	
		Pipe Connection Size	mm	DN125	DN150	DN150	DN150	DN150	DN200	DN200	
		Water Flow Rate	m³/h	115	127	138	152	173	188	207	
	Condenser	Water Pressure Drop	kPa	50	53	53	57	57	57	59	
		Pipe Connection Size	mm	DN125	DN150	DN150	DN150	DN150	DN200	DN200	
Annual Cor	nprehensive	Energy Efficiency ACOP	kW/kW	5.76	5.77	5.70	5.73	5.79	5.81	5.79	
	Energ	y Efficiency Rating		Level 1	Level 1	Level 1	Level 1	Level 1	Level 1	Level 1	
		Quantity					1				
Compressor		Туре			Se	emi-hermeti	c Twin-scre	w Compress	or		
		Startup Method					Υ-Δ				
Р	artial Load E	Energy Modulation Rang	е			Stepless	Energy Mo	dulation			
Un	it Maximum	Operating Current	А	368	400	453	489	544	584	644	
	Unit Start	ing Current	А	569	629	694	761	862	939	1041	
2 ()		Туре				,	R134a				
Refrigerant		Charge	kg	208	230	251	276	314	341	375	
		L (A)	mm	3350	3350	3350	3350	3350	3550	3550	
Dime	nsions	W (B)	mm	1400	1400	1400	1400	1400	1550	1550	
		H (C)	mm	1950	1950	1950	1950	1950	2050	2050	
								4830 5250 5755			
	Unit \	Veight	kg	3530	3600	3750	4230	4830	5250	5755	

Note:

P: 09

1. The above parameters are based on the national standard GB/T 19409-2013:

Cooling operating conditions: chilled water outlet temperature 7° C, water flow rate = cooling capacity × 0.172 m³/(h·kW), groundwater inlet temperature 25°C, water flow rate = cooling capacity \times 0.215 m³/(h·kW).

Heating operating conditions: hot water outlet temperature 45°C, flow rate same as the evaporator water flow rate at the rated cooling condition, heat source inlet temperature 10° C, flow rate same as the condenser water flow rate at the rated cooling condition.

- 2. Energy efficiency rating is determined according to standard GB 30721-2014.
- 3. The evaporator and condenser are designed with two-pass, with a maximum operating pressure of 1.0MPa in the water chamber, and use
- 4. Power supply system: 380V/3N~/50Hz.
- 5. We reserve the right to modify the samples without prior notice to make our products adaptable to customers.

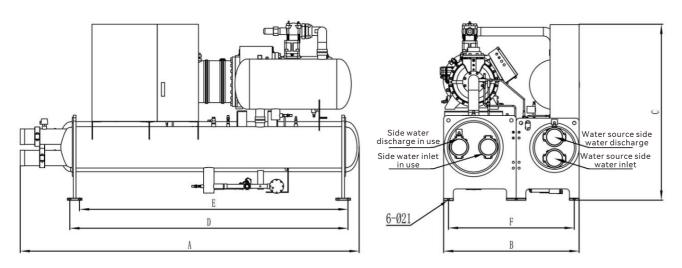
>> Technical Data Sheet (GWP Series Dual Compressor)

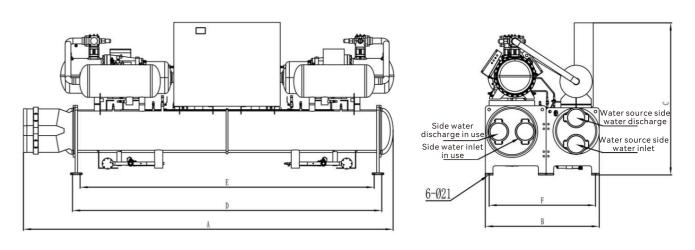
	Model	G\\\/D****M\\ D\$\\	ı	2270	2310	2350	2380	2410	2470	2530	2570	2610	2660
	Model GWP****MARSN Cooling Capacity kV			940	1050	1188	1334	1472	1654	1863	2008	2140	2404
		. ,											
		ng Input Power	kW	148.4	165.5	189.1	210.7	233.0	260.7	294.1	317.6	335.6	379.7
Co		g Input Current	A	264.9	295.4	337.5	376.1	415.9	466.7	526.4	568.5	600.7	679.7
Co		g Efficiency EER Water Flow	W/W	6.33	6.34	6.28	6.33	6.32	6.34	6.33	6.32	6.38	6.33
Cooling Operating Conditions	Evaporator	Rate Water Pressure	m³/h	162	181	204	229	253	284	320	345	368	413
ions	orat	Drop Pipe Connection	кРа	41	78	71	78	76	79	79	81	88	89
ting	_	Size Water Flow	mm	DN150	DN200	DN200	DN200	DN200	DN200	DN250	DN250	DN250	DN250
	Condenser	Rate Water Pressure	m³/h	202	226	255	287	316	356	401	432	460	517
	den	Drop	кРа	44	57	56	56	60	58	67	71	73	71
	ser	Pipe Connection Size	mm	DN150	DN200	DN200	DN200	DN200	DN200	DN250	DN250	DN250	DN250
	Heat	ing Capacity	kW	968	1071	1212	1374	1501	1704	1919	2048	2228	2452
	Heati	ng Input Power	kW	196.1	214.5	237.6	272.6	296.6	333.6	370.7	401.0	430.0	472.7
_	Heatin	g Input Current	Α	350.0	382.9	424.1	486.6	529.4	595.5	661.7	715.8	767.6	843.8
Heating Operating Conditions	Heating	g Efficiency COP	W/W	4.94	4.99	5.10	5.04	5.06	5.11	5.18	5.11	5.18	5.19
ing (E < a	Water Flow Rate	m³/h	202	226	255	287	316	356	401	432	460	517
ition	Evaporator	Water Pressure Drop	kPa	67	85	83	91	91	94	94	94	97	99
atin	ator	Pipe Connection Size	mm	DN150	DN200	DN200	DN200	DN200	DN200	DN250	DN250	DN250	DN250
Q	Co	Water Flow Rate	m³/h	162	181	204	229	253	284	320	345	368	413
	Condense	Water Pressure Drop	kPa	54	57	61	57	55	61	63	67	71	76
	_ ~	Pipe Connection	mm	DN150	DN200	DN200	DN200	DN200	DN200	DN250	DN250	DN250	DN250
Annua	Compre	Land Control	kW/kW	5.72	5.75	5.76	5.76	5.76	5.80	5.83	5.79	5.85	5.83
		Efficiency Rating		Level 1	Level 1	Level 1	Level 1	Level 1	Level 1	Level 1	Level 1	Level 1	Level 1
Cor		Quantity						:	2	1		1	
mpre		Type					Semi-her	metic Twir	ı-screw Co	mpressor			
Compresso		Startup Method						Υ.	-Δ	<u> </u>			
Partial	Load Er	nergy Modulation	n Range				Ste	pless Ener	gy Modula	tion			
		perating Current		536	586	649	744	810	911	1012	1095	1174	1291
Uı	nit Starti	ing Current	Α	596	665	759	846	936	1050	1184	1279	1352	1529
		Туре						R1:	 34a				
Refrigerant		Charge	kg	293	328	371	416	460	501	551	627	682	751
_ #		L (A)	mm	4460	4460	4460	4900	4900	4900	4900	4900	5450	5450
Dime	nsions	W (B)	mm	1400	1400	1400	1600	1600	1600	1600	1800	1800	1800
Dillie		H (C)	mm	2150	2150	2150	2150	2150	2150	2150	2250	2250	2250
	Unit Weight kg				5240	6070	6300	6480	6900	8500	8750	9430	10350
		ng Weight	kg	4940 5250	5600	6450	6700	6900	7400	7950	8140	8820	9650
	Operatii	ig weight	ng .	3230	3000	0430	0700	0700	7400	7730	0140	0020	7000

1. The above parameters are based on the national standard GB/T 19409-2013:

Cooling operating conditions: chilled water outlet temperature 7°C, water flow rate = cooling capacity × 0.172 m³/(h·kW), groundwater inlet temperature 25°C, water flow rate = cooling capacity \times 0.215 m³/(h·kW).

Heating operating conditions: hot water outlet temperature 45°C, flow rate same as the evaporator water flow rate at the rated cooling condition, heat source inlet temperature 10° C, flow rate same as the condenser water flow rate at the rated cooling condition.

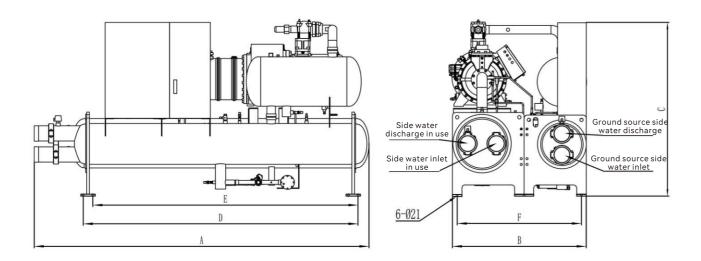

- 2. Energy efficiency rating is determined according to standard GB 30721-2014.
- 3. The evaporator and condenser are designed with two-pass, with a maximum operating pressure of 1.0MPa in the water chamber, and use clamp connections.
- 4. Power supply system: 380V/3N~/50Hz.
- 5. We reserve the right to modify the samples without prior notice to make our products adaptable to customers.


P: 12

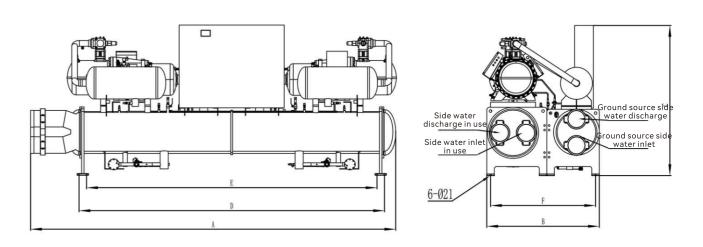
>> Unit Outline Drawing (WHP Series Single Compressor)

M 1.1			Dimer	nsions			Pipe Connectio	n Specifications
Model	А	В	С	D	E	F	Using Side	Heat Source Side
WHP1080MARSN	3000	1300	1800	2540	2340	1200	DN100	DN100
WHP1090MARSN	3000	1300	1800	2540	2340	1200	DN100	DN100
WHP1110MARSN	3010	1350	1850	2540	2340	1250	DN125	DN125
WHP1120MARSN	3010	1350	1850	2540	2340	1250	DN125	DN125
WHP1135MARSN	3010	1350	1850	2540	2340	1250	DN125	DN125
WHP1150MARSN	3010	1350	1850	2540	2340	1250	DN125	DN125
WHP1170MARSN	3010	1350	1850	2540	2340	1250	DN125	DN125
WHP1190MARSN	3350	1400	1950	2870	2670	1300	DN125	DN125
WHP1210MARSN	3350	1400	1950	2870	2670	1300	DN150	DN150
WHP1230MARSN	3350	1400	1950	2870	2670	1300	DN150	DN150
WHP1285MARSN	3350	1400	1950	2870	2670	1300	DN150	DN150
WHP1310MARSN	3550	1550	2050	2870	2670	1450	DN150	DN150
WHP1340MARSN	3550	1550	2050	2870	2670	1450	DN200	DN200

>> Unit Outline Drawing (WHP Series Dual Compressor)



Madal			Dime	nsions			Pipe Connection Specifications		
Model	А	В	С	D	Е	F	Using Side	Heat Source Side	
WHP2270MARSN	4460	1400	2150	4070	3870	1300	DN150	DN150	
WHP2310MARSN	4460	1400	2150	4070	3870	1300	DN200	DN200	
WHP2350MARSN	4460	1400	2150	4070	3870	1300	DN200	DN200	
WHP2380MARSN	4900	1600	2150	4270	4070	1500	DN200	DN200	
WHP2410MARSN	4900	1600	2150	4270	4070	1500	DN200	DN200	
WHP2470MARSN	4900	1600	2150	4270	4070	1500	DN200	DN200	
WHP2530MARSN	4900	1600	2150	4270	4070	1500	DN250	DN250	
WHP2570MARSN	4950	1800	2250	4270	4070	1700	DN250	DN250	
WHP2510MARSN	5450	1850	2250	4670	4470	1750	DN250	DN250	
WHP2660MARSN	5450	1850	2250	4670	4470	1750	DN250	DN250	


P: 14

>> Unit Outline Drawing (GWP Series Single Compressor)

				Pipe Connection Specifications				
Model	А	В	С	D	E	F	Using Side	Heat Source Side
GWP1080MARSN	3000	1300	1800	2540	2340	1200	DN100	DN100
GWP1090MARSN	3000	1300	1800	2540	2340	1200	DN100	DN100
GWP1110MARSN	3010	1350	1850	2540	2340	1250	DN125	DN125
GWP1120MARSN	3010	1350	1850	2540	2340	1250	DN125	DN125
GWP1135MARSN	3010	1350	1850	2540	2340	1250	DN125	DN125
GWP1150MARSN	3010	1350	1850	2540	2340	1250	DN125	DN125
GWP1170MARSN	3010	1350	1850	2540	2340	1250	DN125	DN125
GWP1190MARSN	3350	1400	1950	2870	2670	1300	DN125	DN125
GWP1210MARSN	3350	1400	1950	2870	2670	1300	DN150	DN150
GWP1230MARSN	3350	1400	1950	2870	2670	1300	DN150	DN150
GWP1285MARSN	3350	1400	1950	2870	2670	1300	DN150	DN150
GWP1310MARSN	3550	1550	2050	2870	2670	1450	DN150	DN150
GWP1340MARSN	3550	1550	2050	2870	2670	1450	DN200	DN200

>> Unit Outline Drawing (GWP Series Dual Compressor)

Model	Dimensions						Pipe Connection Specifications	
	А	В	С	D	E	F	Using Side	Heat Source Side
GWP2270MARSN	4460	1400	2150	4070	3870	1300	DN150	DN150
GWP2310MARSN	4460	1400	2150	4070	3870	1300	DN200	DN200
GWP2350MARSN	4460	1400	2150	4070	3870	1300	DN200	DN200
GWP2380MARSN	4900	1600	2150	4270	4070	1500	DN200	DN200
GWP2410MARSN	4900	1600	2150	4270	4070	1500	DN200	DN200
GWP2470MARSN	4900	1600	2150	4270	4070	1500	DN200	DN200
GWP2530MARSN	4900	1600	2150	4270	4070	1500	DN250	DN250
GWP2570MARSN	4950	1800	2250	4270	4070	1700	DN250	DN250
GWP2510MARSN	5450	1850	2250	4670	4470	1750	DN250	DN250
GWP2660MARSN	5450	1850	2250	4670	4470	1750	DN250	DN250

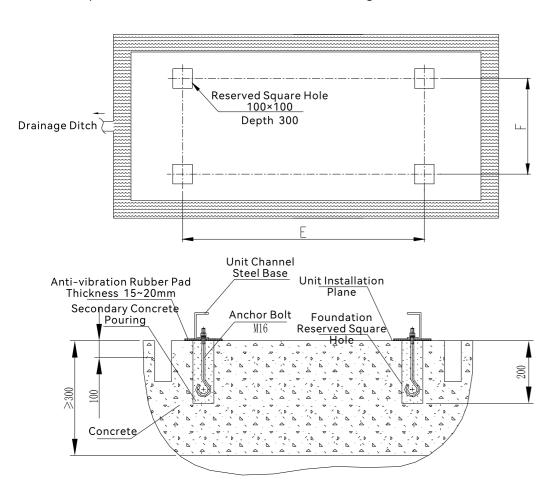
P: 16

>> Unit Hoisting and Moving

Do not allow the unit to collide with the ground during transportation or entry into the engine room, as this may cause excessive impact force.

Avoid having the steel cable contact and damage the refrigerant piping, insulation materials, and control panel during lifting and transportation.

>> Installation Foundation


This foundation plan is for reference only. Users should adjust the design according to concrete strength and local soil conditions.

Ensure the foundation is level, with a maximum height difference of ≤5mm across the platform.

Install vibration isolators when placing the unit on intermediate or top floors to prevent noise and vibration transfer.

10

Consider adding a circular drainage ditch around the foundation for water drainage during maintenance. Refer to the example below for foundation installation and fixing methods.

>> Engine Room Requirements

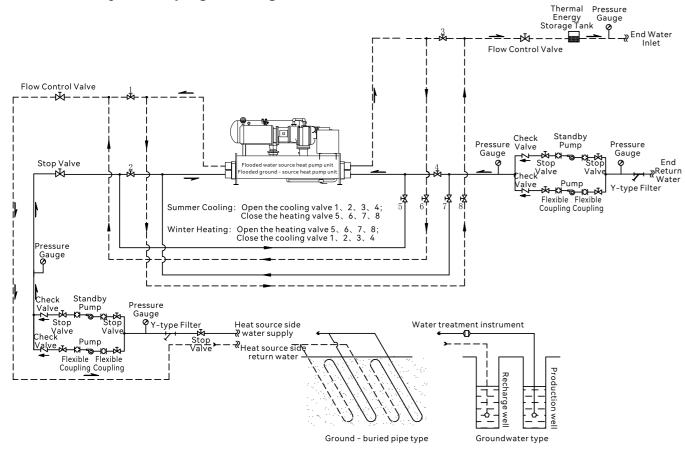
- 01. The unit must be installed in a dedicated engine room, not outdoors. Measures should be taken to discharge the heat generated during operation, keeping the room temperature below 40°C.
- 02. Adequate space should be left around the unit for maintenance. No pipes or conduits should be laid above it.
- 03. The unit should be installed on a non deforming rigid base or concrete foundation, capable of supporting its operating weight.
- 04. The engine room must have sufficient space for installation and maintenance, allowing personnel unrestricted access. It should also have enough space for lifting compressor parts and tube pulling during repairs.
- 05. There should be enough well installed, outward opening doors with over 1 hour fire resistance. If on the building's interior side, they should auto - close. This ensures free exit in emergencies.
- 06. Ground level engine rooms need natural ventilation with an area of at least 0.14G^{1/2} (square meters), where G is the refrigerant charge weight (kg). The airflow should not be hindered.
- 07. Underground engine rooms need mechanical ventilation with an exhaust rate of at least 13.88G^{2/3} (liters/second), where G is the refrigerant charge weight. Multi - speed fans are recommended. The exhaust fan's inlet or duct should be near the unit with proper protection.
- 08. An emergency stop or power off switch should be installed near the engine room. A switch to control the emergency operation of the mechanical ventilation fan should also be provided.
- 09. No flammable or explosive substances except the refrigerant in the unit can be stored. The maximum allowed refrigerant storage is 150kg.
- 10. The engine room should be designed for easy water drainage and smooth refrigerant discharge when the safety valve activates.
- 11. The design should meet local noise level requirements. Measures should be taken during installation and piping to prevent vibration transmission.

>> Water System Piping

- 01. When installing a water source heat pump system, pay attention to the positions of the using side and the heat source side to avoid incorrect pipe connections. The system must be equipped with a diverter valve to switch between cooling in summer and heating in winter.
- 02. Install filtering devices on the pipes entering the unit and set up blowdown outlets in suitable positions to prevent impurities in the water from corroding the unit.
- 03. Filtering devices need to be checked and replaced regularly, and adequate space for installation and maintenance should be considered.
- 04. To ensure efficient operation, users are advised to clean the pipes regularly and remove scale from inside the equipment pipes. For professional maintenance, contact the Oubo after-sales service.
- 05. The inlet and outlet pipes and valves of the unit should be properly insulated to avoid heat loss and condensation.
- 06. When using two or more units in parallel, try to make the resistance of the supply and return pipes of each unit equal to keep the flow rate the same and prevent uneven flow.
- 07. For the water pipes on the using side, if a closed loop system is used, install an expansion tank at the highest point of the water pipes to mitigate water volume changes due to temperature and isolate the impact of make-up water pressure. The water level in the expansion tank should be at least 1m above the highest point of the water pipes.
- 08. Connect the unit's inlet and outlet to the corresponding water pipes using anti vibration hoses or rubber joints to isolate vibrations, noise, and interference.
- 09. When the unit is running, the water flow rate on the heat source side and the using side must not be less than 70% of the rated flow rate to prevent accidents.
- 10. Install coupling seats on the inlet and outlet pipes of the heat source side and the using side for easy separation from the water pipes during future maintenance.

www.oubokt.com | 400-915-8448 www.oubokt.com | 400-915-8448

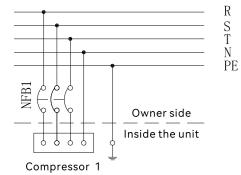
Hook

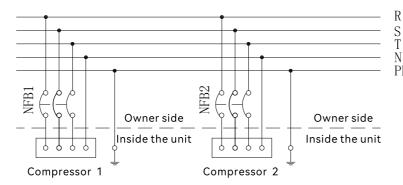

I-beam Support Bar

Lifting Sling

Unit

>> Water System Piping Drawing




>>> Electrical Wiring

The power supply must match the unit's nameplate ratings, typically $380V/3N\sim/50Hz$ for standard products. During operation, the voltage must be stable, with the frequency within $\pm 2\%$ of the nameplate rating. The working voltage should be within $\pm 10\%$ of the rated value, the phase – to – phase voltage difference within $\pm 2\%$ of the rated value, and the difference between the highest and lowest phase currents less than 3% of the rated value.

Wiring from the power supply to the unit must follow electrical codes and have good insulation. After wiring, use a 500V megohmmeter to test the insulation resistance between electrical components' terminals and the unit body, which should be at least $5M\Omega$.

For safety, the unit's casing must have a reliable grounding device to prevent electric shock, installed in line with electrical codes.

Single compressor unit wiring diagram

Dual compressor unit wiring diagram

P: 17 www.oubokt.com | 400-915-8448

For specific operations regarding the installation, use, and maintenance of the unit, please refer to the **Installation and Operation Manual** and **Electrical Operation Instructions** provided with the unit.

Note: Since OBAIR products are subject to continuous improvement and innovation, any changes to the product models, specifications, and parameters shown in this material will not be notified separately. Your understanding is appreciated.